Team:Calgary/Notebook/References
From 2013.igem.org
(Difference between revisions)
(13 intermediate revisions not shown) | |||
Line 9: | Line 9: | ||
<h3>Our Project</h3> | <h3>Our Project</h3> | ||
- | <li>Belson, K., Fahim, K. (2007, October 6) After extensive beef recall, Topps goes out of business. <i>The New York Times</i> . Retrieved from http://www.nytimes.com/2007/10/06/us/06topps.html?pagewanted=all&_r=0</li> | + | <li>Belson, K., Fahim, K. (2007, October 6) After extensive beef recall, Topps goes out of business. <i>The New York Times</i>. Retrieved from http://www.nytimes.com/2007/10/06/us/06topps.html?pagewanted=all&_r=0</li> |
<li>CBC News. (2010, May 10) Inside Walkerton: Canada's worst ever <i>E. coli</i> contamination: the shock, the investigation and the aftermath. <i>CBC News</i></li> | <li>CBC News. (2010, May 10) Inside Walkerton: Canada's worst ever <i>E. coli</i> contamination: the shock, the investigation and the aftermath. <i>CBC News</i></li> | ||
- | <li>Centers for Disease Control and Prevention. ( | + | <li>Centers for Disease Control and Prevention. (2011) Enterohemorrhagic <i>Escherichia coli</i>. Retrieved from http://www.cdc.gov/ecoli/general/</li> |
+ | |||
+ | <li>Chase-Topping, M., Gally, D., Low, C., Matthews, L., Woolhouse, M. (2008). Super-shedding and the link between human infection and livestock carriage of <i>Escherichia coli</i> O157. <i>Nature Reviews Microbiology</i>, 6(12):904-12. doi: 10.1038/nrmicro2029</li> | ||
<li> Cross, A. (2012, October 2) Most extensive beef recall in Canadian history expanded again. <i>National Post</i>.</li> | <li> Cross, A. (2012, October 2) Most extensive beef recall in Canadian history expanded again. <i>National Post</i>.</li> | ||
Line 22: | Line 24: | ||
<li>Hernandez, J., Prado, V., Torres, D., Waldenström, J., Haemig, P. D., Olsen, B. (2007) Enteropathogenic <i>Escherichia coli</i> (EPEC) in Antarctic fur seals <i>Arctocephalus gazella</i>. <i>Polar Biology</i>. doi:10.1007/s00300-007-0282-2</li> | <li>Hernandez, J., Prado, V., Torres, D., Waldenström, J., Haemig, P. D., Olsen, B. (2007) Enteropathogenic <i>Escherichia coli</i> (EPEC) in Antarctic fur seals <i>Arctocephalus gazella</i>. <i>Polar Biology</i>. doi:10.1007/s00300-007-0282-2</li> | ||
+ | |||
+ | <li>Junillon, T., Vimont, A., Mosticone, D., Mallen, B., Baril, F., Rozand, C., Flandrois, J. P. (December 2012). Simplified detection of food-borne pathogens: an in situ high affinity capture and staining concept. <i>Journal of Microbial Methods</i> 91(3), 501-505. doi: 10.1016/j.mimet.2012.09.015</li> | ||
<li>Mermin, J. H., Griffin, P. M. (1999) Invited commentary: public health: outbreaks of <i>Escherichia coli</i> O157:H7 infections in Japan. <i>American Journal of Epidemiology.</i> 150(8), 797-803.</li> | <li>Mermin, J. H., Griffin, P. M. (1999) Invited commentary: public health: outbreaks of <i>Escherichia coli</i> O157:H7 infections in Japan. <i>American Journal of Epidemiology.</i> 150(8), 797-803.</li> | ||
<li>Okeke, I. (2009). Diarrheagenic <i>Escherichia coli</i> in sub-Saharan Africa: status, uncertainties and necessities. <i>The Journal Of Infection In Developing Countries</i>, 3(11), 817-842. doi:10.3855/jidc.586</li> | <li>Okeke, I. (2009). Diarrheagenic <i>Escherichia coli</i> in sub-Saharan Africa: status, uncertainties and necessities. <i>The Journal Of Infection In Developing Countries</i>, 3(11), 817-842. doi:10.3855/jidc.586</li> | ||
+ | |||
+ | <li>Russo, T. A., Johnson, J. R. (2003) Medical and economic impact of extraintestinal infections due to <i>Escherichia coli</i>: focus on an increasingly important endemic problem. <i>Microbes and Infection.</i> 5(5), 449-456.</li> | ||
<li>World Health Organization. (2011) <i>Outbreak of E. coli O104:h4 infection: update 30</i>. Retrieved from http://www.euro.who.int/en/health-topics/disease-prevention/food-safety/news/news/2011/07/outbreaks-of-e.-coli-o104h4-infection-update-30</li> | <li>World Health Organization. (2011) <i>Outbreak of E. coli O104:h4 infection: update 30</i>. Retrieved from http://www.euro.who.int/en/health-topics/disease-prevention/food-safety/news/news/2011/07/outbreaks-of-e.-coli-o104h4-infection-update-30</li> | ||
+ | |||
<h3>Detector</h3> | <h3>Detector</h3> | ||
Line 51: | Line 58: | ||
<li>Lawson, D. M., Artymiuk, P. J., Yewdall, S. J., Smith, J. M., Livingstone, J. C., Treffry, A., Luzzago, A., Levi, S., Arosio, P., Cesareni, G. (1991). Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. <i>Nature, 349</i>(6309), 541–4. doi:10.1038/349541a0</li> | <li>Lawson, D. M., Artymiuk, P. J., Yewdall, S. J., Smith, J. M., Livingstone, J. C., Treffry, A., Luzzago, A., Levi, S., Arosio, P., Cesareni, G. (1991). Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. <i>Nature, 349</i>(6309), 541–4. doi:10.1038/349541a0</li> | ||
+ | |||
+ | <li>Munro, H.N. (1990). Iron regulation of ferritin gene expression. <i>Journal of Cellular Biochemistry</i> 44(2), 107-115.</li> | ||
<li>Zhang, W., Zhang, Y., Chen, Y., Li, S., Gu, N., Hu, S., Sun, Y., Chen, X., & Li, Q. (2013). Prussian blue modified ferritin as peroxidase mimetics and its applications in biological detection, <i>Journal of Nanoscience and Nanotechnology, 12</i>, 1–8. doi:10.1166/jnn.2012.6871</li> | <li>Zhang, W., Zhang, Y., Chen, Y., Li, S., Gu, N., Hu, S., Sun, Y., Chen, X., & Li, Q. (2013). Prussian blue modified ferritin as peroxidase mimetics and its applications in biological detection, <i>Journal of Nanoscience and Nanotechnology, 12</i>, 1–8. doi:10.1166/jnn.2012.6871</li> | ||
Line 56: | Line 65: | ||
<li>Zhang, X.-Q., Gong, S.-W., Zhang, Y., Yang, T., Wang, C.-Y., & Gu, N. (2010). Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. <i>Journal of Materials Chemistry, 20</i>(24), 5110. doi:10.1039/c0jm00174k</li> | <li>Zhang, X.-Q., Gong, S.-W., Zhang, Y., Yang, T., Wang, C.-Y., & Gu, N. (2010). Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. <i>Journal of Materials Chemistry, 20</i>(24), 5110. doi:10.1039/c0jm00174k</li> | ||
+ | |||
+ | <h3>Beta-Lactamase</h3> | ||
+ | |||
+ | <li>Kong, Y., Yao, H., Ren, H., Subbian, S., Cirillo, S. L. G., Sacchettini, J. C., … Cirillo, J. D. (2010). Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice. <i>Proceedings of the National Academy of Sciences of the United States of America, 107</i>(27), 12239–44. doi:10.1073/pnas.1000643107</li> | ||
+ | |||
+ | <li>Moore, J.T., Davis, S.T., & Dev, I.K. (1997). The development of beta-lactamase as a highly versatile genetic reporter for eukaryotic cells. <i>Analytical Biochemistry, 247</i>(2), 203–9. doi:10.1006/abio.1997.2092</li> | ||
+ | |||
+ | <li>Qureshi, S. (2007). β-Lactamase: an ideal reporter system for monitoring gene expression in live eukaryotic cells. <i>BioTechniques, 42</i>(1), 91–96. doi:10.2144/000112292</li> | ||
+ | |||
+ | <li>Remy, I., Ghaddar, G., & Michnick, S. W. (2007). Using the beta-lactamase protein-fragment complementation assay to probe dynamic protein-protein interactions. <i>Nature Protocols, 2</i>(9), 2302–6. doi:10.1038/nprot.2007.356</li> | ||
+ | |||
+ | <li>Wehrman, T., Kleaveland, B., Her, J.-H., Balint, R. F., & Blau, H. M. (2002). Protein-protein interactions monitored in mammalian cells via complementation of beta -lactamase enzyme fragments. <i>Proceedings of the National Academy of Sciences of the United States of America, 99</i>(6), 3469–74. doi:10.1073/pnas.062043699</li> | ||
+ | |||
+ | |||
+ | <h3>Linker</h3> | ||
+ | |||
+ | <li>Huh, Y. S., & Kim, I. H. (2003). Purification of fusion ferritin from recombinant <i>E. coli</i> using two-step sonications. <i>Biotechnology Letters</i>, 25(12), 993–6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12889837</li> | ||
+ | |||
+ | <li>Litowski, J. R., & Hodges, R. S. (2002). Designing heterodimeric two-stranded alpha-helical coiled-coils. Effects of hydrophobicity and alpha-helical propensity on protein folding, stability, and specificity. <i>The Journal of Biological Chemistry, 277</i>(40), 37272–9. doi:10.1074/jbc.M204257200</li> | ||
+ | |||
+ | <li>Zhang, X.-Q., Gong, S.-W., Zhang, Y., Yang, T., Wang, C.-Y., & Gu, N. (2010). Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. <i>Journal of Materials Chemistry, 20</i>(24), 5110. doi:10.1039/c0jm00174k</li> | ||
+ | <h3>Journals and Parts Pages on the Registry of Standard Biological Parts</h3> | ||
<li>Apostolovic, B., & Klok, H.-A. (2008). pH-sensitivity of the E3/K3 heterodimeric coiled coil. <i>Biomacromolecules, 9</i>(11), 3173–80. doi:10.1021/bm800746e</li> | <li>Apostolovic, B., & Klok, H.-A. (2008). pH-sensitivity of the E3/K3 heterodimeric coiled coil. <i>Biomacromolecules, 9</i>(11), 3173–80. doi:10.1021/bm800746e</li> | ||
Line 92: | Line 123: | ||
<li>Gill, A., Martinez-Perez, A., McIIwham, S., & Blais, B. (2012). Development of a method for the detection of verotoxin-producing <i>Escherichia coli</i> in food. <i>Journal of Food Protection</i>, 75(5), 827-837.</li> | <li>Gill, A., Martinez-Perez, A., McIIwham, S., & Blais, B. (2012). Development of a method for the detection of verotoxin-producing <i>Escherichia coli</i> in food. <i>Journal of Food Protection</i>, 75(5), 827-837.</li> | ||
- | |||
- | |||
<li>He, Y., Zhang, S., Zhang, X., Baloda, M., Gurung, A. S., Xu, H., … Liu, G. (2011). Ultrasensitive nucleic acid biosensor based on enzyme-gold nanoparticle dual label and lateral flow strip biosensor.<i> Biosensors & Bioelectronics</i>, 26(5), 2018–24. doi:10.1016/j.bios.2010.08.079</li> | <li>He, Y., Zhang, S., Zhang, X., Baloda, M., Gurung, A. S., Xu, H., … Liu, G. (2011). Ultrasensitive nucleic acid biosensor based on enzyme-gold nanoparticle dual label and lateral flow strip biosensor.<i> Biosensors & Bioelectronics</i>, 26(5), 2018–24. doi:10.1016/j.bios.2010.08.079</li> | ||
Line 108: | Line 137: | ||
<li>Kim, S.-E., Ahn, K.-Y., Park, J.-S., Kim, K. R., Lee, K. E., Han, S.-S., & Lee, J. (2011). Fluorescent ferritin nanoparticles and application to the aptamer sensor. <i>Analytical Chemistry, 83</i>(15), 5834–43. doi:10.1021/ac200657s</li> | <li>Kim, S.-E., Ahn, K.-Y., Park, J.-S., Kim, K. R., Lee, K. E., Han, S.-S., & Lee, J. (2011). Fluorescent ferritin nanoparticles and application to the aptamer sensor. <i>Analytical Chemistry, 83</i>(15), 5834–43. doi:10.1021/ac200657s</li> | ||
- | |||
- | |||
<li>Lee, J., Kim, S. W., Kim, Y. H., & Ahn, J. Y. (2002). Active human ferritin H/L-hybrid and sequence effect on folding efficiency in Escherichia coli. <i>Biochemical and Biophysical Research Communications</i>, 298(2), 225–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12387819</li> | <li>Lee, J., Kim, S. W., Kim, Y. H., & Ahn, J. Y. (2002). Active human ferritin H/L-hybrid and sequence effect on folding efficiency in Escherichia coli. <i>Biochemical and Biophysical Research Communications</i>, 298(2), 225–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12387819</li> | ||
Line 118: | Line 145: | ||
<li>Li, D., Yang, M., Hu, J., Zhang, Y., Chang, H., & Jin, F. (2008). Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river. <i>Water Research, 42</i>(1-2), 307–17. doi:10.1016/j.watres.2007.07.016</li> | <li>Li, D., Yang, M., Hu, J., Zhang, Y., Chang, H., & Jin, F. (2008). Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river. <i>Water Research, 42</i>(1-2), 307–17. doi:10.1016/j.watres.2007.07.016</li> | ||
- | |||
- | |||
<li>Lohsse, A., Ullrich, S., Katzmann, E., Borg, S., Wanner, G., Richter, M., … Schüler, D. (2011). Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense: the mamAB operon is sufficient for magnetite biomineralization. <i>PloS ONE</i>, 6(10), e25561. doi:10.1371/journal.pone.0025561</li> | <li>Lohsse, A., Ullrich, S., Katzmann, E., Borg, S., Wanner, G., Richter, M., … Schüler, D. (2011). Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense: the mamAB operon is sufficient for magnetite biomineralization. <i>PloS ONE</i>, 6(10), e25561. doi:10.1371/journal.pone.0025561</li> | ||
Line 126: | Line 151: | ||
<li>Maloy, S., Stewart, V., and Taylor, R. (1996). <i>Genetic Analysis of Pathogenic Bacteria.</i> New York: Cold Spring Harbor Laboratory Press.</li> | <li>Maloy, S., Stewart, V., and Taylor, R. (1996). <i>Genetic Analysis of Pathogenic Bacteria.</i> New York: Cold Spring Harbor Laboratory Press.</li> | ||
+ | |||
+ | <li>Meckler, J.F., Bhakta, M.S., Kim, M.S., Ovadia, R., Habrian, C.H., Zykovich, A., ... Baldwin, E.P. (2013). Quantitative analysis of TALE-DNA interactions suggests polarity effects. <i>Nucleic Acids Research</i>, 41(7), 4118–28. doi:10.1093/nar/gkt085</li> | ||
<li>Mercer, A.C., Gaj, T. Fuller, R.P., & Barbas, C.F. 3rd (2012). Chimeric TALE recombinases with programmable DNA sequence specificity. <i>Nucleic Acids Research</i>, 40(21), 11163-72. doi: 10.1093/nar/gks875</li> | <li>Mercer, A.C., Gaj, T. Fuller, R.P., & Barbas, C.F. 3rd (2012). Chimeric TALE recombinases with programmable DNA sequence specificity. <i>Nucleic Acids Research</i>, 40(21), 11163-72. doi: 10.1093/nar/gks875</li> | ||
Line 133: | Line 160: | ||
<li>Miller, J.C., Tan, S., Qiao, G., Barlow, K.A., Wang, J., Xia, D.F., Rebar, E.J. (2011). A TALE nuclease architecture for efficient genome editing. <i>Nature Biotechnology</i>, 29(2), 143-148.</li> | <li>Miller, J.C., Tan, S., Qiao, G., Barlow, K.A., Wang, J., Xia, D.F., Rebar, E.J. (2011). A TALE nuclease architecture for efficient genome editing. <i>Nature Biotechnology</i>, 29(2), 143-148.</li> | ||
- | <li> | + | <li>Mussolino, C., & Cathomen, T. (2012). TALE nucleases: tailored genome engineering made easy. <i>Current Opinion in Biotechnology, 23</i>(5), 644–50. doi:10.1016/j.copbio.2012.01.013</li> |
+ | |||
+ | <li>Naito, M., Iwahori, K., Miura, A., Yamane, M., & Yamashita, I. (2010). Circularly polarized luminescent CdS quantum dots prepared in a protein nanocage. <i>Angewandte Chemie International Edition</i>, 49(39), 7006-7009.</li> | ||
<li>Nakajima, Y., & Ohmiya, Y. (2010). Bioluminescence assays: multicolor luciferase assay, secreted luciferase assay and imaging luciferase assay. <i>Expert Opinion on Drug Discovery</i>, 5(9), 835–849. doi:10.1517/17460441.2010.506213</li> | <li>Nakajima, Y., & Ohmiya, Y. (2010). Bioluminescence assays: multicolor luciferase assay, secreted luciferase assay and imaging luciferase assay. <i>Expert Opinion on Drug Discovery</i>, 5(9), 835–849. doi:10.1517/17460441.2010.506213</li> | ||
<li>Parker, M. J., Allen, M. A., Ramsay, B., Klem, M. T., Young, M., Douglas, T. (2008) Expanding the temperature range of biomimetic synthesis using a ferritin from the hyperthermophile <i>Pyrococcus furiosus</i>. <i>Chemistry of Materials</i>, 20(4), 1541–1547. doi:10.1021/cm702732x</li> | <li>Parker, M. J., Allen, M. A., Ramsay, B., Klem, M. T., Young, M., Douglas, T. (2008) Expanding the temperature range of biomimetic synthesis using a ferritin from the hyperthermophile <i>Pyrococcus furiosus</i>. <i>Chemistry of Materials</i>, 20(4), 1541–1547. doi:10.1021/cm702732x</li> | ||
+ | |||
+ | <li>Perna, N. T., Plunkett, G., Burland, V., Mau, B., Glasner, J. D., Rose, D. J., ... Blattner, F. R. (2000) Genome sequence of enterohaemorrhagic <i>Escherichia coli</i> O157:H7. <i>Letters to Nature</i>. 409, 529-533. doi:10.1038/35054089</li> | ||
<li>Pfleger, K. D. G., & Eidne, K. A. (2006). Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). <i>Nature Methods</i>, 3(3), 165–174. doi:10.1038/nmeth841</li> | <li>Pfleger, K. D. G., & Eidne, K. A. (2006). Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). <i>Nature Methods</i>, 3(3), 165–174. doi:10.1038/nmeth841</li> | ||
<li>Piston, D. W., & Kremers, G.-J. (2007). Fluorescent protein FRET: the good, the bad and the ugly. <i>Trends in Biochemical Sciences</i>, 32(9), 407–414. doi:10.1016/j.tibs.2007.08.003</li> | <li>Piston, D. W., & Kremers, G.-J. (2007). Fluorescent protein FRET: the good, the bad and the ugly. <i>Trends in Biochemical Sciences</i>, 32(9), 407–414. doi:10.1016/j.tibs.2007.08.003</li> | ||
- | |||
- | |||
- | |||
- | |||
<li>Santambrogio, P., Levi, S., Cozzi, A., Rovida, E., Albertini, A., & Arosio, P. (1993). Production and characterization of recombinant heteropolymers of human ferritin H and L chains.<i> The Journal of Biological Chemistry</i>, 268(17), 12744–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8509409</li> | <li>Santambrogio, P., Levi, S., Cozzi, A., Rovida, E., Albertini, A., & Arosio, P. (1993). Production and characterization of recombinant heteropolymers of human ferritin H and L chains.<i> The Journal of Biological Chemistry</i>, 268(17), 12744–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8509409</li> | ||
Line 154: | Line 181: | ||
<li>Watt, G. D., Kim, J.-W., Zhang, B., Miller, T., Harb, J. N., Davis, R. C., & Choi, S. H. (2012). A protein-based ferritin bio-nanobattery. <i>Journal of Nanotechnology</i>, 2012, 1–9. doi:10.1155/2012/516309</li> | <li>Watt, G. D., Kim, J.-W., Zhang, B., Miller, T., Harb, J. N., Davis, R. C., & Choi, S. H. (2012). A protein-based ferritin bio-nanobattery. <i>Journal of Nanotechnology</i>, 2012, 1–9. doi:10.1155/2012/516309</li> | ||
- | |||
- | |||
<li>Wong, K. K. W., Douglas, T., Gider, S., Awschalom, D. D., & Mann, S. (1998). Biomimetic synthesis and characterization of magnetic proteins (magnetoferritin). <i>Chemistry of Materials</i>, 10(1), 279–285. doi:10.1021/cm970421o</li> | <li>Wong, K. K. W., Douglas, T., Gider, S., Awschalom, D. D., & Mann, S. (1998). Biomimetic synthesis and characterization of magnetic proteins (magnetoferritin). <i>Chemistry of Materials</i>, 10(1), 279–285. doi:10.1021/cm970421o</li> |
Latest revision as of 02:48, 29 October 2013