Team:OUC-China

From 2013.igem.org

(Difference between revisions)
Line 314: Line 314:
<div class="banner">
<div class="banner">
       <ul>
       <ul>
-
         <li style="background-image: url('https://static.igem.org/mediawiki/2013/2/24/Slider-wenjun-result.jpg');">
+
         <li style="background-image: url('https://static.igem.org/mediawiki/igem.org/9/9e/Tital.jpg');">
           <div class="inner">
           <div class="inner">
             <h1>WE DID IT !</h1>
             <h1>WE DID IT !</h1>
Line 322: Line 322:
         </li>
         </li>
-
         <li style="background-color:#1abc9c;">
+
         <li style="background-image: url('https://static.igem.org/mediawiki/igem.org/7/7d/Cluster.png');">
           <div class="inner">
           <div class="inner">
-
             <h1>Come on! OUC IGEM 2013</h1>
+
             <h1>Compression of Metabolic Pathways</h1>
-
             <p>不要着急!我们可以弄完的啦~</p>
+
             <p>Constructing an artificial cluster to build the compartment by operating fewer genes. </p>
-
 
+
             <a class="btn" href="https://2013.igem.org/Team:OUC-China/Design">learn more</a>
-
             <a class="btn" href="http://jing.fm/tracks/225c3f.html">来,听首歌轻松下!</a>
+
           </div>
           </div>
         </li>
         </li>

Revision as of 17:20, 27 September 2013

Abstract

Putting biological resources into production has now become a hot topic since the development of technology and the draining of natural resources. For example, research about biofuel and biochemistry is now flourishing. But biological products have drawbacks of being inefficient and not broad-spectrum. Inspired by eukaryotic membranous organelles, we aim to construct a prokaryotic membranous organelle to realize division of work inside the cell and improve the efficiency of production. How could a membrane be constructed in a Prokaryote? The answer may lie in this species: Magnetosprillum Magneticum, which can form a natural intracellular membrane. But this bacteria is slow-growing and requires demanding culture conditions, so the purpose of our project is to reconstruct the magnetosome membrane in E.coli, creating better conditions for efficient biological production.

Learn more

Specialist of our project

1.We designed an artificial prokaryotic membranous organelle which is capable of anchoring proteins, opening up new possibilities for intracellular biochemistry reactions.
2.We took advantage of the 3D structure of RNA, using ribosomes as a barrier to stabilize RNA.
3.We used Microfluidic Technology to detect the magnetism of our magnetic bacteria, Magnetospirillum Magneticum.
4.We preserved Magnetospirillum Magneticum AMB-1 mamAB genes in E.coli, prevented the genes lose when AMB-1 strain was cultured in High oxygen partial pressure environment.

Learn more

Reconstructing the Magnetosome Membrane in E. coli

Learn more