Team:Calgary

From 2013.igem.org

(Difference between revisions)
Line 49: Line 49:
$(SlideID).css('display', 'block');
$(SlideID).css('display', 'block');
});
});
 +
 +
window.setInterval(function(){
 +
CurrentSlide = ++CurrentSlide % TotalSlides;
 +
$('.Slides').css('display', 'none');
 +
SlideID = '#Slide' + CurrentSlide;
 +
$(SlideID).css('display', 'block');
 +
}, 5000);
});
});
</script>
</script>
Line 72: Line 79:
<h2>Our Project</h2>
<h2>Our Project</h2>
<p>
<p>
-
Outbreaks of foodborne illnesses are a growing problem in our lives. In 2011, the Centers for Disease Control and Prevention (CDC) in the United States, identified 767 such outbreaks affecting nearly 14,000 people. The action of pathogenic <i>E. coli</i> was a recurring theme in many of these outbreaks. In Alberta, we experienced our own foodborne disease outbreak in late 2012. The result of pathogenic <i>E. coli</i> serotype O157, this led to significant food recalls alongside hospitalizations, deaths, massive economic losses, and an overall loss of consumer confidence in food safety.  
+
Outbreaks of foodborne illnesses are a growing problem in our lives. In 2011, the Centers for Disease Control and Prevention (CDC) in the United States, identified 767 outbreaks affecting nearly 14,000 people of foodborne illnesses. Of these, pathogenic <i>E. coli</i> was a recurring theme in many of these outbreaks. In Alberta, we recently experienced our own foodborne disease outbreak in late 2012. This outbreak was the result of pathogenic <i>E. coli</i> serotype O157 and led to significant food recall alongside many hospitalizations, deaths, massive economic losses and an overall loss of consumer confidence in food safety. Current detection methods require long incubation times to amplify <i>E. coli</i> in the sample and followed by amplification to verify the presence of known genes that are associated with pathogenic <i>E. coli</i>.
</p>
</p>
<p>
<p>
-
One of the contributing factors connected with the outbreak in Alberta was the lack of rapid on-site detection systems available. Current methods require a long incubation to allow <i>E. coli</i> to multiply in the sample, followed by amplification to detect the presence of known genes associated with pathogenic <i>E. coli</i>, all of which add up to precious time lost between contamination and discovery. 
+
One of the contributing factors connected with the outbreak in Alberta was the lack of rapid on-site detection systems available. Thus, the University of Calgary 2013 iGEM Collegiate team is using synthetic biology to develop system to rapidly detect the presence of pathogenic <i>E. coli</i> in the beef industry. By using engineered biological nanoparticles and DNA binding proteins we can specifically detect pathogenic DNA sequences. Our biosensor functions at the genomic level to detect the presence or absence of pathogenic <i>E. coli</i> in a given sample. This system allows us to pinpoint contamination during meat processing and also provides the ability to prescreen cattle in a preventative way to limit potential sources of contamination from the processing chain. Our system provides a powerful new tool for food safety, but also shows promise as a platform for the rapid detection of target organisms that are identified as key targets in a myriad of sectors from health to environment to biosecurity.
-
                              </p>
+
-
                              <p>
+
-
To address the problem, the University of Calgary 2013 iGEM Collegiate team is using synthetic biology to develop a system to rapidly detect the presence of pathogenic <i>E. coli</i> in the beef industry. By using engineered biological nanoparticles and DNA binding proteins, we can specifically detect pathogenic DNA sequences. Our biosensor functions at the genomic level to detect the presence or absence of pathogenic <i>E. coli</i> in a given sample. This system allows us to pinpoint contamination during meat processing and also provides the ability to prescreen cattle in a preventative way to remove potential sources of contamination from the processing chain. Our system is a powerful new tool for food safety, and shows promise as a platform for the rapid detection of target organisms identified as key targets in a myriad of sectors, from health to environment to biosecurity.
+
</p>
</p>
</section>
</section>
Line 88: Line 92:
<h2>Our Sensor</h2>
<h2>Our Sensor</h2>
<img src="https://static.igem.org/mediawiki/2013/4/44/Calgary2013_Our_Sensor.png">
<img src="https://static.igem.org/mediawiki/2013/4/44/Calgary2013_Our_Sensor.png">
-
<p>Check out what we did in the lab this year in response to <i>E. coli</i> contamination in the beef industry. Learn about the design of our detector, linker, reporter, as well as, the development of a prototype and mathematical model.</p>
+
<p>Check out what we did in the lab this year in response to <i>E. coli</i> contamination in the beef industry. Learn about the design of our detector, linker, reporter as well as the development of a prototype and mathematical model.</p>
</div>
</div>
</a>
</a>

Revision as of 21:41, 27 September 2013

Our Project

Outbreaks of foodborne illnesses are a growing problem in our lives. In 2011, the Centers for Disease Control and Prevention (CDC) in the United States, identified 767 outbreaks affecting nearly 14,000 people of foodborne illnesses. Of these, pathogenic E. coli was a recurring theme in many of these outbreaks. In Alberta, we recently experienced our own foodborne disease outbreak in late 2012. This outbreak was the result of pathogenic E. coli serotype O157 and led to significant food recall alongside many hospitalizations, deaths, massive economic losses and an overall loss of consumer confidence in food safety. Current detection methods require long incubation times to amplify E. coli in the sample and followed by amplification to verify the presence of known genes that are associated with pathogenic E. coli.

One of the contributing factors connected with the outbreak in Alberta was the lack of rapid on-site detection systems available. Thus, the University of Calgary 2013 iGEM Collegiate team is using synthetic biology to develop system to rapidly detect the presence of pathogenic E. coli in the beef industry. By using engineered biological nanoparticles and DNA binding proteins we can specifically detect pathogenic DNA sequences. Our biosensor functions at the genomic level to detect the presence or absence of pathogenic E. coli in a given sample. This system allows us to pinpoint contamination during meat processing and also provides the ability to prescreen cattle in a preventative way to limit potential sources of contamination from the processing chain. Our system provides a powerful new tool for food safety, but also shows promise as a platform for the rapid detection of target organisms that are identified as key targets in a myriad of sectors from health to environment to biosecurity.