Team:Bielefeld-Germany/Labjournal/September
From 2013.igem.org
Line 273: | Line 273: | ||
*The vectors were digested accordingly and dephosphorylated on 31.08. They were once again checked by PAGE, which is shown in Figure 2 and yields a positiv result. All three match the expected size. | *The vectors were digested accordingly and dephosphorylated on 31.08. They were once again checked by PAGE, which is shown in Figure 2 and yields a positiv result. All three match the expected size. | ||
- | [[Image:Bielefeld-Germany2013_cyt_exprvec.jpg|300px|thumb|left|<p align="justify"> '''Figure 1: Results of a PAGE of the digested and dephosphorylated expression vectors <bbpart>BBa_K608006</bbpart>, <bbpart>BBa_K608002</bbpart> and <bbpart>BBa_K525998</bbpart>; Expected Size: 2.1kb; Enzymes: EcoRI, SpeI; Ladder:Thermo Scientific GeneRuler™ 1 kb DNA Ladder. | + | [[Image:Bielefeld-Germany2013_cyt_exprvec.jpg|300px|thumb|left|<p align="justify"> '''Figure 1: Results of a PAGE of the digested and dephosphorylated expression vectors <bbpart>BBa_K608006</bbpart>, <bbpart>BBa_K608002</bbpart> and <bbpart>BBa_K525998</bbpart>; Expected Size: 2.1kb; Enzymes: EcoRI, SpeI; Ladder:Thermo Scientific GeneRuler™ 1 kb DNA Ladder.</p>]] |
*Subsequently the insert mtrCAB was digested with the enzymes XbaI and PstI to perform a suffix insertion into the aforementioned expression vectors. | *Subsequently the insert mtrCAB was digested with the enzymes XbaI and PstI to perform a suffix insertion into the aforementioned expression vectors. | ||
Line 335: | Line 335: | ||
- | [[Image:Bielefeld-Germany2013_mtrCAB_exprvec_control.jpg|300px|thumb|left|<p align="justify"> '''Figure 1: Results of a PAGE of the digested <bbpart>BBa_K1172403</bbpart>, <bbpart>BBa_K1172404</bbpart> and <bbpart>BBa_K1172405</bbpart>; Expected Size: 7.2kb; Enzymes: EcoRI; Ladder:Thermo Scientific GeneRuler™ 1 kb DNA Ladder. | + | [[Image:Bielefeld-Germany2013_mtrCAB_exprvec_control.jpg|300px|thumb|left|<p align="justify"> '''Figure 1: Results of a PAGE of the digested <bbpart>BBa_K1172403</bbpart>, <bbpart>BBa_K1172404</bbpart> and <bbpart>BBa_K1172405</bbpart>; Expected Size: 7.2kb; Enzymes: EcoRI; Ladder:Thermo Scientific GeneRuler™ 1 kb DNA Ladder.</p>]] |
Revision as of 00:02, 1 October 2013
September
Milestones
Week 18
Organization
- This week, we supported the CeBiTec student academy with supervising the ‘Synthetic Biology’ experiment. In addition we had a presentation about iGEM and the Bielefeld iGEM projects.
- Our team assigned the Track Food & Energy in this year, with the project title ‘Ecolectricity – currently available’. Project abstract, safety forms and team roster were added.
MFC
Mediators
- Glycerol dehydrogenase
- Repeating NADH-Assay with three times PBS buffer washing step shows good results with better NADH production for E. coli KRX with pSB1C3 <bbpart>BBa_K1172203</bbpart> and <bbpart>BBa_K1172204</bbpart> compared with E. coli KRX wildtyp. GldA with T7 promotor (<bbpart>BBa_K1172203</bbpart>) shows 0,5 μM NADH overproduction and GldA with Lac promotor (<bbpart>BBa_K1172204</bbpart>) shows 0,3 μM NADH overproduction. The data refer to a culture with OD600 = 3.0.
- Second successful optimized NADH-Assay with Escherichia coli KRX Wildtyp strain and E. coli KRX with pSB1C3 and <bbpart>BBa_K1172203</bbpart>, <bbpart>BBa_K1172204</bbpart>, and <bbpart>BBa_K1172205</bbpart>.
- GldA with T7 promotor (<bbpart>BBa_K1172203</bbpart>) shows 1,7 μM NADH overproduction and GldA with Lac promotor (<bbpart>BBa_K1172204</bbpart>) shows 0,2 μM NADH overproduction. The GldA expression by the Anderson promotor (<bbpart>BBa_K1172205</bbpart>) is too weak for an efficient NADH overproduction. The data refer to a culture with OD600 = 5.0.
- Overexpressed glycerol dehydrogenase (Figure. 4 Week 17) should be examined by MALDI-TOF MS/MS.
- Tryptic digest of gel lanes for analysis with MALDI-TOF.
- Glycerol dehydrogenase was examined by MALDI-TOF MS/MS with a Mascot Score of 266 against Escherichia coli database.
- Overexpressed glycerol dehydrogenase (Figure. 4 Week 17) should be examined by MALDI-TOF MS/MS.
- Riboflavin
- We tried to ligate our four DNA-Sequences in pSB1C3 using Gibson-Assembly.
- To further minimize the risk of false positive clones just carrying pSB1C3, we digested the pSB1C3-PCR-products with DpnI, prior to Gibson.
- We assembled every fragment with its specific vector six times. For each fragment, we used two different approaches: The “Standard-protocol” where you take 100ng insert in 3:1 molar excess compared to the vector and an “over the top-protocol” (OTTP). The OTTP uses the same molar excess, but a much higher amount of DNA.
- After the succesfull integration of the three most important sequences in pSB1C3, and the insofar completion of our first Biobrick BBa_K7211XXX (ribC), we started with the elimination of the illegal restriction sites in rib and norM.
- Therefore we diluted one rib and one norM sample to 10 ng/µl and used it as PCR template.
- At the beginning of the week, we had started to design primers for this purpose:
- pst1-234 fwd (38 bp) TGTCACCTTAGAACCCTGTAGCCATTATGGTCGTACGC
- pst1-234 rev (32 bp) CGACCATAATGGCTACAGGGTTCTAAGGTGAC
- pst1-1644 fwd (30 bp) GTGCCCCATACTGTAGGTGAAACCACGTTG
- pst1-1644 rev (34 bp) AACGTGGTTTCACCTACAGTATGGGGCACAATCG
- EcoR1 fwd (43 bp) GGCACTCAGTTCACTTAGGTATAGAATTTATAACAACAGTCAC
- EcoR1 rev (43 bp) GTGACTGTTGTTATAAATTCTATACCTAAGTGAACTGAGTGCC
- pst1 norM fwd (38 bp) GCGATCGTGCTGATATTTCTGCGGTGGTCGCCAAAGTC
- pst1 norM rev (41 bp) CAATAAGCCGACTTTGGCGACCACCGCAGAAATATCAGCAC
Cytochromes
Biosafety
- We executed the characterization of araC by cultivation (200rpm) in shaking flasks with different carbon sources. We used the M9 minimal medium with glucose/arabinose/glycin to measure the growth and the fluorescence of our biosafety system. The fluorescence is caused by the protein GFP which is a replacement for Barnase which is applied for the characterization to draw conclusions from the theoretical expression of the RNase. In continious intervals samples were taken the growth of the cells were measured by absorbance and the fluorescence by a plate reader.
Porines
- Successful Hexadecan-Assay for characterization of hydrophobicity of the outer membrane. Using Escherichia coli KRX Wildtyp and comparing it with:
- <bbpart>BBa_K1172502</bbpart>: <bbpart>BBa_K1172501</bbpart> + <bbpart>BBa_K525998</bbpart>
- <bbpart>BBa_K1172503</bbpart>: <bbpart>BBa_K1172501</bbpart> + <bbpart>BBa_J04500</bbpart>
- <bbpart>BBa_K1172504</bbpart>: <bbpart>BBa_K1172501</bbpart> + <bbpart>BBa_K608007</bbpart>
- <bbpart>BBa_K1172505</bbpart>: <bbpart>BBa_K1172501</bbpart> + <bbpart>BBa_K608006</bbpart>
- <bbpart>BBa_K1172507</bbpart>: <bbpart>BBa_K1172501</bbpart> + <bbpart>BBa_K608002</bbpart>
- The hydrophobicity increases continuously with increasing promoter strength up to 221% hydrophobizity in contrast to wildtyp strain.
- Successful ONPG and NPN uptake assays were performed. Membrane permeability is continuously increasing from weak to strong promoter strength.
- Beside testing OprF Biobrick (<bbpart>BBa_K1172501</bbpart>) with different assays and SDS-PAGE, the membrane should be visually displayed. The technique of choice is atomic force microscopy.
- The glass slides were coated with Escherichia coli KRX wild type and Escherichia coli KRX with <bbpart>BBa_K1172502</bbpart> in order to compare the membrane differences. The AFM itself was performed with the help of the working group of Prof. Dr. Dario Anselmetti, with special help from Dr. Volker Walhorn.
Week 19
Organization
- Our WDR TV contribution could be seen in the ‘OWL local time’ and in the WDR library.
- We have successfully performed the day of synthetic biology in the city of Bielefeld. We were able to explain many people our project with the help of our poster and the kids had a lot of fun with performing different experiments for introducing them into scientific work. DNA isolation from fruit and vegetables, pipetting of bright colors, chromatography with markers, a potato battery and microscopy were on the program. All in all a very successful day.
MFC
Mediators
Cytochromes
- Attempted another Gibson assembly with psB1C3 and the three mtrCAB fragments.
psB1C3 | 4-0609-301 | 110ng/ul | 0.6ul | 66ng |
Fragment1 | 4-2608-302 | 48.8ng/ul | 3.1ul | 151ng |
Fragment2 | 4-2008-304 | 68.3ng/ul | 0.4ul | 27ng |
Fragment3 | 4-0509-301 | 285ng/ul | 0.9ul | 256ng |
Various cells of the transformation were transfered to new plates and incubated again. Subsequently plasmids were isolated from this cultures and a restriction with the enzymes EcoRI and PstI and a total amount of 500ng isolated plasmid DNA was performed. The resulting fragment should be the respective insert mtrCAB with a size of approx. 5.1kb. The Results are shown in Figure 1 below.
Figure 1: Results of a PAGE of the restriction on the alleged biobrick psB1C3::mtrCAB; Expected Size: 5.1kb; Enzymes: EcoRI, PstI; Ladder:Thermo Scientific GeneRuler™ 1 kb DNA Ladder. An aliquot of the plasmid DNA was used for sequencing. The corresponding results verify the correct insertion of the mtrCAB cluster into the psB1C3 backbone.
Biosafety
- We isolated the plasmids which we have transformed into KRX cells days before. We also transformed the Biobricks <bbpart>BBa_R0010</bbpart> (lacI regulated promoter) and <bbpart>BBa_K741002</bbpart> (plac with RBS+GFP+terminators) and measured their DNA concentration:
- Alr_1: 214,2 ng/µL
- Alr_2: 203,6 ng/µL
- Alr_3: 301,3 ng/µL
- BBa_R0010: 121,7 ng/µL
- BBa_R0010: 136,0 ng/µL
- BBa_K741002: 145,9 ng/µL
- BBa_K741002: 175,1 ng/µL
- We deleted GFP out of the pBAD device for preparing to replace the RNase by cutting and insertion with the correlated restriction enzymes.
- PCR, purification and transformation in KRX:
- RNase Ba fwd_rev 1: 79,2 ng/µL
- RNase Ba fwd_rev 2: 85,9 ng/µL
- Ptac fwd_rev 1: 74,4 ng/µL
- Ptac fwd_rev 2: 69,8 ng/µL
- RNase_pBAD (GFP_del) 68,4 ng/µL
- Ptac_alr_pre_suf 1: 33,4 ng/µL
- Ptac_alr_pre_suf 2: 41,0 ng/µL
- We isolated more plasmids out of KRX competente cells. The new BBa were previously transformed into competent cells.
- Ptac_alr (9-89-451) 190,8 ng/µL
- Ptac_alr (9-89-452) 212,8 ng/µL
- Ptac_alr (9-89-453) 117,9 ng/µL
- Ptac_alr (9-89-454) 107,3 ng/µL
- RNase Ba (9-89-455) 101,0 ng/µL
- RNase Ba (9-89-456) 82,5 ng/µL
- pBAD_RNase Ba (9-89-4567 177,9 ng/µL
- pBAD_RNase Ba (9-89-458) 151,9 ng/µL
- pBAD_RNase Ba (9-89-459) 89,2 ng/µL
- pBAD_RNase Ba (9-89-460) 83,5 ng/µL
- BBa_I13504 (9-89-461) 152,3 ng/µL
- BBa_I13504 (9-89-462) 159,4 ng/µL
- BBa_R0040 (9-89-463) 125,7 ng/µL
- BBa_R0040 (9-89-464) 129,0 ng/µL
- BBa_R0040 (9-89-465) 105,5 ng/µL
- K1172001 alr (9-89-466) 169,8 ng/µL
- K1172001 alr (9-89-467) 156,0 ng/µL
- K1172001 alr (9-89-468) 163,7 ng/µL
- K1172001 alr (9-89-468) 135,8 ng/µL
- BBa_C0040_3 250,2 ng/µL (9-108-451)
- BBa_C0040_4 124,5 ng/µL (9-108-452)
- Ptac_alr1 115,8 ng/µL (9-108-453)
- Ptac_alr5 68,1 ng/µL (9-108-454)
- Ptac_alr6 163,6 ng/µL (9-108-455)
- DNase Ba3 86,6 ng/µL (9-108-456)
After the isolation and measuring we checked if the right insert is in the vector, so we did restriction analysis with EcoR1+ Pst1 and Barnase+pSB1C3 only with EcoR1. The results are listened below:
Porines
- SDS-PAGE with improved protein isolation of outer membrane porin oprF by Release of periplasmic protein fraction from E. coli by cold osmotic shock using Cell fractionating buffer 2.2. There is a slight overexpression band for E.coli with T7 promoter (<bbpart>BBa_K1172502</bbpart>) at the expected size of OprF (36 kDa). But the gel is a little bit overloaded with protein. Maybe the SDS concentration in Cell fractionating buffer 2.2 was elected with 2% too high, which has led to partial cell lysis and total protein extraction.
- Further improving of cell fractioning for protein isolation of outer membrane porin oprF by Release of periplasmic protein fraction from E. coli by cold osmotic shock using Cell fractionating buffer 2.3.
- The SDS-PAGE shows a significantly higher protein concentration for E.coli with OprF and T7 promoter (<bbpart>BBa_K1172502</bbpart>). It seems to be that the higher membrane permeability allows a better release of membrane proteins by 0.2 % SDS. Nevertheless, we can see a strong overexpression band at the expected OprF size of about 36 kDa for <bbpart>BBa_K1172502</bbpart>, which is equated with a strong expression and overproduction of OprF.
- Overexpressed outer membrane porin (Figure. 5) should be examined by MALDI-TOF MS/MS.
- Tryptic digest of gel lanes for analysis with MALDI-TOF.
- Outer membrane porin was examined by MALDI-TOF MS/MS with a Mascot Score of 222 against bacteria database.
Week 20
Organization
- iGEM-Team Bielefeld 2013 T-shirts and hoodies were designed and are in production. Orange shirts with a great Ecolectricity logo. We are pleased to wear them in Lyon.
- As announced, we have participated at the conference '60 Years of DNA’ in Berlin at 14. September and received good reviews for our project.
MFC
Mediators
- Glycerol dehydrogenase
- Glycerol dependent NADH-Assay with Escherichia coli KRX Wildtyp strain and E. coli KRX with pSB1C3 and <bbpart>BBa_K1172203</bbpart> by testing supplementation of different glycerol concentrations to the LB-medium.
- NADH-Assay shows a quiet good NADH overproduction for <bbpart>BBa_K1172203</bbpart> with increasing glycerol concentration.
Cytochromes
- The mtrCAB cluster was cut out the psB1C3 backbone and ligated into three existing Biobricks via suffix insertion. The corresponding parts are promoters and ribosome binding sites of varying strength.
- <bbpart>BBa_K608006</bbpart> Anderson 0.33 + weak RBS
- <bbpart>BBa_K608002</bbpart> Anderson 0.77 + strong RBS
- <bbpart>BBa_K525998</bbpart> T7 + strong RBS
- The vectors were digested accordingly and dephosphorylated on 31.08. They were once again checked by PAGE, which is shown in Figure 2 and yields a positiv result. All three match the expected size.
- Subsequently the insert mtrCAB was digested with the enzymes XbaI and PstI to perform a suffix insertion into the aforementioned expression vectors.
- A total of 640ng DNA was used.
- Usage of CutSmart Buffer, XbaI and PstI Hf to ensure 100% activity
- The correct insert was later extracted from the gel and concentrated via lyophilisation.
- 4-1209-304....44ng/ul
- 4-1209-305....32ng/ul
- 4-1209-306....26ng/ul
- The following ligation was performed with two different protocols. One suggesting the usage of 50ng vector and a 3-fold excess of the insert in a total reaction volume of 20ul, the other the usage of 10ng vector and a 6-fold excess of the insert in a total reaction volume of 10ul.
- 1 K608006::mtrCAB 20ul
- 2 K608002::mtrCAB 20ul
- 3 K525998::mtrCAB 20ul
- 4 K608006::mtrCAB 10ul
- 5 K608002::mtrCAB 10ul
- 6 K525998::mtrCAB 10ul
Part | Vector | Insert | Volume | K608006::mtrCAB | 50ng | 374ng | 20ul | K608002::mtrCAB | 50ng | 374ng | 20ul | K525998::mtrCAB | 50ng | 374ng | 20ul | K608006::mtrCAB | 10ng | 150ng | 10ul | K608002::mtrCAB | 10ng | 150ng | 10ul | K525998::mtrCAB | 10ng | 150ng | 10ul |
---|
- Notes: Interestingly the ligations with only 10ng vector and 6-fold excess of the insert seemed to be more effecient, since they yield significantly more colonies.
- The succesfull ligation was confirmed via control restriction. The isolated plasmids from the aforementioned transformations were digested with the enzyme EcoRI, which should linearised them and generate a 7.2kb fragment. The Results are shown in Figure3 and verify the correct ligation, leading to the following succesfully constructed devices:
- <bbpart>BBa_K1172403</bbpart>: mtrCAB cluster with Anderson 0.33 and weak rbs
- <bbpart>BBa_K1172404</bbpart>: mtrCAB cluster with Anderson 0.77 and strong rbs
- <bbpart>BBa_K1172405</bbpart>: mtrCAB cluster with T7 and strong rbs
- Subsequently glycerol stocks were made from the ligations and the further characterisation was started.
Biosafety
- We transformed the tetracyclin repressor into KRX via electroporation for plasmid isolation. After this we isolated the plasmids and other plasmids which are listend below.
- BBa_C0040_3 250,2 ng/µL (9-108-451)
- BBa_C0040_4 124,5 ng/µL (9-108-452)
- Ptac_alr1 115,8 ng/µL (9-108-453)
- Ptac_alr5 68,1 ng/µL (9-108-454)
- Ptac_alr6 163,6 ng/µL (9-108-455)
- DNase Ba3 86,6 ng/µL (9-108-456)
- We did purification of the restriction and measured the dna concentration via nanodrop:
- BBa_C0040 TetO: 35,0 ng/µL
- B0015 Terminator 22,1 ng/µL
- GFP 4,4 ng/µL
- Alr 8,7 ng/µL
- After we isolated the different plasmids we assembled the alanine racemase with the terminator (<bbpart>BBa_K1172003</bbpart>), TetO with GFP (<bbpart>BBa_K1172014</bbpart>) lacI+terminator. We transformed them into competent cells and did plasmid isolation.
- LacI (C0012) 86,5 ng/µL (9-129-451)
- Terminator (B0015) 95,4 ng/µL (9-129-452)
- Terminator (B0015) 46,1 ng/µL (9-129-453)
- Alr_Terminator 84,6 ng/µL (9-129-454)
- Alr_Terminator 65,5 ng/µL (9-129-455)
- Alr_Terminator 33,4 ng/µL (9-129-456)
- Alr_Terminator 98,2 ng/µL (9-129-457)
- TetO_GFP 102,6 ng/µL (9-129-458)
- TetO_GFP 77,1 ng/µL (9-129-459)
- TetO_GFP 91,8 ng/µL (9-129-460)
- After the plasmid isolation we checked with a restriction analysis with EcoR1 and Pst1 if the correct inserts are in the vectors. The results are schown below.
- We send them for sequence analysis to the sequencing service. The results confirmed our constructs.
- We did a PCR to get araC. It was done by executing the phusion protocoll and recipe. The results are listened below:
- After cheking the PCR result we purified the samples with the PCR clean up Kit and measured the DNA concentration.:
- araC 12a 58,8 ng/µL (9-129-463)
- araC 12b 84,1 ng/µL (9-129-464)
- We did PCR with Tetracylin repressor purificated the samples and did gelelectrophoresis:
- We assembled the three front constructs of our biosafety system via Gibson Assembly:
- BSVaraC
- 1,5 µL pRha (BBa_K914003)
- 2,3 µL alr_terminator (BBa_K1172003)
- 1,5 µL araC
- BSVTetR
- 1,5 µL pRha (BBa_K914003)
- 2,3 µL alr_terminator (BBa_K1172003)
- 1,5 µL TetR (BBa_C0040)
- BSVlacI
- 1,0 µL pRha (BBa_K914003)
- 7,0 µL lacI (BBa_C0012)
- 0,7 µL alr_terminator
- We had assembled TetO with GFP before. pBAD with GFP and plac with GFP were already in the parts registry.
- Back constructs:
- BSVaraC
- pBAD+GFP
- BSVaraC
- BSVTetR
- TetO+GFP
- BSVTetR
- BSVlacI
- plac+GFP
- BSVlacI
Porines
Week 21
Organization
MFC
Mediators
- Glycerol dehydrogenase
- Glycerol dependent NADH-Assay with Escherichia coli KRX Wildtyp strain and E. coli KRX with pSB1C3 and <bbpart>BBa_K1172203</bbpart> by testing different glycerol concentrations of M9-medium.
- NADH-Assay shows an increasing intra- and extracellular NADH concentration for <bbpart>BBa_K1172203</bbpart> with increasing glycerol concentration in M9-medium.
Cytochromes
Biosafety
- We cultivated the different biosafety systems for measuring how the specific product building rate looks like in M9 mediumwith different carbon sources. As mentioned before, we used GFP instead of Barnase for characterisation. We sampled in regulary intervals to measure the absorbance and the fluorescence.
Porines
Contents |