Team:Calgary/Project/OurSensor/Reporter/BetaLactamase
From 2013.igem.org
Line 9: | Line 9: | ||
<h2>What is β-lactamase?</h2> | <h2>What is β-lactamase?</h2> | ||
<p>β-lactamase is an enzyme encoded by the ampicillin resistant gene (<i>amp</i>R) frequently present in plasmids for selection. Structurally, β-lactamase is a 29 kDa monomeric enzyme (Figure 1). Its enzymatic activity provides resistance to β-lactam antibiotics such as cephamysin, carbapenems and penicillium through hydrolysis of the β-lactam ring, a structure shared by these antibiotics (Qureshi, 2007).</p> | <p>β-lactamase is an enzyme encoded by the ampicillin resistant gene (<i>amp</i>R) frequently present in plasmids for selection. Structurally, β-lactamase is a 29 kDa monomeric enzyme (Figure 1). Its enzymatic activity provides resistance to β-lactam antibiotics such as cephamysin, carbapenems and penicillium through hydrolysis of the β-lactam ring, a structure shared by these antibiotics (Qureshi, 2007).</p> | ||
- | <figure> | + | <figure> |
<img src="https://static.igem.org/mediawiki/2013/a/ad/UCalgary2013TRBetalactamaserender.png"> | <img src="https://static.igem.org/mediawiki/2013/a/ad/UCalgary2013TRBetalactamaserender.png"> | ||
<figcaption> | <figcaption> | ||
Line 64: | Line 64: | ||
ampicillin survival assay | ampicillin survival assay | ||
</b></span> | </b></span> | ||
- | </a> with <i>E. coli</i> transformed with β-lactamase. We let the culture grow overnight, then pelleted the cells. We then removed the supernatant and resuspended the cells in fresh LB with ampicillin, chloramphenicol, and ampicillin and chloramphenicol and we measured the OD at different time points. This assay allowed us to determine whether the β-lactamase was produced and whether it is functional. Only the bacteria producing | + | </a> with <i>E. coli</i> transformed with β-lactamase. We let the culture grow overnight, then pelleted the cells. We then removed the supernatant and resuspended the cells in fresh LB with ampicillin, chloramphenicol, and ampicillin and chloramphenicol and we measured the OD at different time points. This assay allowed us to determine whether the β-lactamase was produced and whether it is functional. Only the bacteria producing functional β-lactamase enzymes were able to survive in the presence of ampicillin resulting in an increase in OD. Whereas bacteria lacking the abililty to produce functional #946;-lactamase enzyme were unable to survive, seenby a decrease in OD. (Figure 6).</p> |
<figure> | <figure> | ||
<img src="https://static.igem.org/mediawiki/2013/thumb/0/03/YYC2013_Blac_Amp_Survival_Assay_with_colonies.jpg/800px-YYC2013_Blac_Amp_Survival_Assay_with_colonies.jpg"> | <img src="https://static.igem.org/mediawiki/2013/thumb/0/03/YYC2013_Blac_Amp_Survival_Assay_with_colonies.jpg/800px-YYC2013_Blac_Amp_Survival_Assay_with_colonies.jpg"> |
Revision as of 20:55, 26 October 2013
β-Lactamase
β-Lactamase
What is β-lactamase?
β-lactamase is an enzyme encoded by the ampicillin resistant gene (ampR) frequently present in plasmids for selection. Structurally, β-lactamase is a 29 kDa monomeric enzyme (Figure 1). Its enzymatic activity provides resistance to β-lactam antibiotics such as cephamysin, carbapenems and penicillium through hydrolysis of the β-lactam ring, a structure shared by these antibiotics (Qureshi, 2007).
Many advantages come from working with β-lactamase. It shows high catalytic efficiency and simple kinetics. Also, no orthologs of ampR are known to be encoded by eukaryotic cells and no toxicity was identified making this protein very useful in studies involved eukaryotes (Qureshi, 2007). β-lactamase has been used to track pathogens in infected murine models (Kong et al., 2010). However, in addition to its application in eukaryotic cells, β-lactamase efficiently cleaves a wide variety of substrates but its versatility goes beyond that; ampR preserves its activity even when fused to heterologous protein (Moore et al., 1997). This feature, in particular, makes β-lactamase a potential tool for assembly of synthetic constructs.
How is β-lactamase used as a Reporter?
β-lactamase, in the presence of different substrates, can give various outputs. It can produce a fluorogenic output in the presence of a cephalosporin derivative (CCF2/AM) and enzymatic activity can be detected by a fluorometer (Remy et al., 2007).
Besides fluorescence assays, β-lactamase can also be used to obtain colourimetric outputs by breaking down synthetic compounds such as nitrocefin (Figure 2). The colour change goes from yellow to red (Remy et al., 2007). Colourimetric assays can also be done with benzylpenicillin as the substrate, which, gives a pH output that can be detected with pH indicators to give a colourimetric output (Li et al., 2008).