<p>The goal of our project is to design a biosensor to rapidly identify cattle known as <span class="Yellow"><b>super shedders.</b></span>We are building a <span class="Yellow"><b>DNA-based biosensor</span></b>, as it is more reliable and cheaper than a protein-based sensor; antibodies are expensive and the proteins that they target can get degraded during the sample preparation, whereas DNA is much more stable. A DNA-based sensor also enabled us to target a broader range of harmful <i>E.coli</i>.
<p><b>Figure 1.</b> Our system is composed of both an immobile element on the strip that will capture our target DNA and a mobile element that will report the presence of our target DNA. </p>
+
</figcaption>
+
</figure>
-
<h2><span class="blue">Sensor:</span> Putting it all together </h2>
<h2>Can we detect DNA with specificity?</h2>
<h2>Can we detect DNA with specificity?</h2>
Line 32:
Line 41:
<p><b>Figure 26.</b> (A) A Dot blot of TALEA on nitrocellulose paper (<a href="https://2013.igem.org/Team:Calgary/Notebook/Protocols/FunctionalityAssayOnNitrocellulose" >protocol</a>). A6 is TALEA soaked in 1.66mM FAM-labeled [B]. A7 is TALEA soaked in 1.66mM FAM-labeled [A]. A2 is TALEA soaked in 1mM FAM-labeled [B]. A3 is TALEA soaked in 1mM FAM-labeled [A]. on A- strip no protein was blotted and it was Soaked in 1.66mM [A]. All strips were soaked in DNA solution for 90 minutes. (B) 1uL of the DNA solutions used for soaking were blotted on nitrocellulose and a picture was taken instantly, to indicate that both [A] and [B] fluoresce to the same extent.
<p><b>Figure 26.</b> (A) A Dot blot of TALEA on nitrocellulose paper (<a href="https://2013.igem.org/Team:Calgary/Notebook/Protocols/FunctionalityAssayOnNitrocellulose" >protocol</a>). A6 is TALEA soaked in 1.66mM FAM-labeled [B]. A7 is TALEA soaked in 1.66mM FAM-labeled [A]. A2 is TALEA soaked in 1mM FAM-labeled [B]. A3 is TALEA soaked in 1mM FAM-labeled [A]. on A- strip no protein was blotted and it was Soaked in 1.66mM [A]. All strips were soaked in DNA solution for 90 minutes. (B) 1uL of the DNA solutions used for soaking were blotted on nitrocellulose and a picture was taken instantly, to indicate that both [A] and [B] fluoresce to the same extent.
+
<h2>Can our coils bind?</h2>
+
<p> After putting in gratuitous effort to build parts containing these coils and successfully purifying these proteins we wanted to determine if the E and K coils interacted with each other. In order to characterize coil-coil interaction we performed an immunoprecipitation (IP) assay. We built a GFP with an E-coil (<a href=” http://parts.igem.org/wiki/index.php?title=Part:BBa_K1189014”> BBa_K1189014</a>) and we also built TALE-B with a K-coil (<a href=” http://parts.igem.org/wiki/index.php?title=Part:BBa_K1189014”>BBa_K1189030</a>). To characterize the binding of the coils we pulled down with either an immunoglobulin G antibody (IgG) that serves as a negative control or with GFP antibody. The idea behind this experiment is to pull down the E coil which is fused to GFP with a GFP antibody and then probe with a anti-his antibody which recognizes the his tag on the TALE fused to the K coil. Upon interaction between the E and K coils we will see an output at approximately 86 kDa when probed with a His-antibody as seen in Figure 7. Our test groups included the coils by themselves and both the E and K coils put together in solution. As seen in Figure 7 a band appears only when we pull E and K coil with a GFP and probe with an anti-his antibody indicating the presence of both GFP and TALE in the elution solution indicating that the coils interact with each other. </p>
<figcaption><b>Figure 7.</b> Immunoprecipitation assay showing that the E and K coils interact with each other. The first three lanes show E-coil, K coil and E-coil with K-coil pulled down with IgG (control) antibody. The last three lanes were pulled down with a anti-GFP antibody and probed with a anti-his antibody. The E-coil is fused to GFP and the K-coil is fused to TALE with a his tag. Therefore, if we pull down with GFP and probe with his-antibody a band would appear the size of TALE. This indicates that both the GFP and the TALE are present and that is possible upon coil-coil interaction.
+
</figcaption>
+
</figure>
+
+
<h2>How does the use of Coils versus Direct Fusions of TALEs Affect our Prussian Blue reporter?</h2>
+
<p>After successfully confirming that we could convert our own ferritin proteins that were produced from the parts we constructed (<a href="http://partsregistry.org/wiki/index.php?title=Part:BBa_K1189018">BBa_K1189018,</a> <a
+
href="http://partsregistry.org/wiki/index.php?title=Part:BBa_K1189021">BBa_K1189021</a>) into Prussian blue ferritin the next step was to evaluate how the design of our parts could potentially affect the reporter activity of our Prussian blue ferritin. Based on the spatial modelling performed by our team it was suggested that assembly of the ferritin nanoparticle with TALE proteins directly fused was highly unlikely. This is because the TALE proteins are significantly larger than the ferritin subunits. Their size would likely result in steric hindrance and prevent the assembly of the full ferritin protein. In order to test the predictions put forward by our modelling we ensured that our protein samples were balanced in order to have the same number ferritin cores in each sample. The catalytic activity of these proteins was then compared. From the data gathered we saw that the Prussian blue ferritin with fused coils (even if TALES are additionally bound to the ferritin via coils) was more effective as a reporter than having the TALE proteins directly fused to the ferritin nanoparticle (Figure 19). The results from this experiment suggest that the predictions made by our model were correct. Using coils however alleviates this issue as these coils are small and would not interfere in the ferritin self-assembly but can be used to attach our TALES to create the FerriTALE. </p>
+
+
<figure>
+
<img src="https://static.igem.org/mediawiki/2013/0/0d/UCalgary2013TRPBFAssayNoColour.png" alt="Recombinant Prussian Blue FerritinMole Balanced" width="465" height="480">
+
<figcaption>
+
<p><b>Figure 19.</b> Samples of our parts that were converted to Prussian Blue ferritin were mole balanced in order to ensure that the same number of effective ferritin cores are present in every sample. Additionally the ferritin-coil fusion was incubated with the TALE-coil fusion part in order to allow their binding for a separate trial. Negative controls include unconverted recombinant ferritin, bovine serum albumin and a substrate only control. Samples were incubated with a TMB substrate solution for 10 minutes at a pH of 5.6. Absorbance readings were taken at the 10 minute time-point at a wavelength of 650 nm. An ANOVA (analysis of variants) was performed upon the values to determine that there was statistical difference in the data gathered (based off of three replicates). A t-test was then performed which determined that the * columns are significantly different from the ** column (p=0.0012). Neither * column is significantly different from each other (p=0.67).</p>
+
</figcaption>
+
</figure>
+
+
<h2><span class="blue">Our Final System: Putting it all together </span> </h2>
<h2>Can we successfully capture our DNA with our detectors with specificity and report it?</h2>
<h2>Can we successfully capture our DNA with our detectors with specificity and report it?</h2>
Line 55:
Line 84:
<p>This assay shows that we can <b> capture our target DNA </b> with two detector TALEs with <b>specificity </b>. Additionally, <b> we can report whether that DNA has been captured</b> and is present in the sample, which is a very important concept for our sensor system. </p>
<p>This assay shows that we can <b> capture our target DNA </b> with two detector TALEs with <b>specificity </b>. Additionally, <b> we can report whether that DNA has been captured</b> and is present in the sample, which is a very important concept for our sensor system. </p>
-
<h2>Can our coils bind?</h2>
-
<p> After putting in gratuitous effort to build parts containing these coils and successfully purifying these proteins we wanted to determine if the E and K coils interacted with each other. In order to characterize coil-coil interaction we performed an immunoprecipitation (IP) assay. We built a GFP with an E-coil (<a href=” http://parts.igem.org/wiki/index.php?title=Part:BBa_K1189014”> BBa_K1189014</a>) and we also built TALE-B with a K-coil (<a href=” http://parts.igem.org/wiki/index.php?title=Part:BBa_K1189014”>BBa_K1189030</a>). To characterize the binding of the coils we pulled down with either an immunoglobulin G antibody (IgG) that serves as a negative control or with GFP antibody. The idea behind this experiment is to pull down the E coil which is fused to GFP with a GFP antibody and then probe with a anti-his antibody which recognizes the his tag on the TALE fused to the K coil. Upon interaction between the E and K coils we will see an output at approximately 86 kDa when probed with a His-antibody as seen in Figure 7. Our test groups included the coils by themselves and both the E and K coils put together in solution. As seen in Figure 7 a band appears only when we pull E and K coil with a GFP and probe with an anti-his antibody indicating the presence of both GFP and TALE in the elution solution indicating that the coils interact with each other. </p>
<figcaption><b>Figure 7.</b> Immunoprecipitation assay showing that the E and K coils interact with each other. The first three lanes show E-coil, K coil and E-coil with K-coil pulled down with IgG (control) antibody. The last three lanes were pulled down with a anti-GFP antibody and probed with a anti-his antibody. The E-coil is fused to GFP and the K-coil is fused to TALE with a his tag. Therefore, if we pull down with GFP and probe with his-antibody a band would appear the size of TALE. This indicates that both the GFP and the TALE are present and that is possible upon coil-coil interaction.
-
</figcaption>
-
</figure>
-
-
<h2>How does the use of Coils versus Direct Fusions of TALEs Affect our Prussian Blue reporter?</h2>
-
<p>After successfully confirming that we could convert our own ferritin proteins that were produced from the parts we constructed (<a href="http://partsregistry.org/wiki/index.php?title=Part:BBa_K1189018">BBa_K1189018,</a> <a
-
href="http://partsregistry.org/wiki/index.php?title=Part:BBa_K1189021">BBa_K1189021</a>) into Prussian blue ferritin the next step was to evaluate how the design of our parts could potentially affect the reporter activity of our Prussian blue ferritin. Based on the spatial modelling performed by our team it was suggested that assembly of the ferritin nanoparticle with TALE proteins directly fused was highly unlikely. This is because the TALE proteins are significantly larger than the ferritin subunits. Their size would likely result in steric hindrance and prevent the assembly of the full ferritin protein. In order to test the predictions put forward by our modelling we ensured that our protein samples were balanced in order to have the same number ferritin cores in each sample. The catalytic activity of these proteins was then compared. From the data gathered we saw that the Prussian blue ferritin with fused coils (even if TALES are additionally bound to the ferritin via coils) was more effective as a reporter than having the TALE proteins directly fused to the ferritin nanoparticle (Figure 19). The results from this experiment suggest that the predictions made by our model were correct. Using coils however alleviates this issue as these coils are small and would not interfere in the ferritin self-assembly but can be used to attach our TALES to create the FerriTALE. </p>
-
-
<figure>
-
<img src="https://static.igem.org/mediawiki/2013/0/0d/UCalgary2013TRPBFAssayNoColour.png" alt="Recombinant Prussian Blue FerritinMole Balanced" width="465" height="480">
-
<figcaption>
-
<p><b>Figure 19.</b> Samples of our parts that were converted to Prussian Blue ferritin were mole balanced in order to ensure that the same number of effective ferritin cores are present in every sample. Additionally the ferritin-coil fusion was incubated with the TALE-coil fusion part in order to allow their binding for a separate trial. Negative controls include unconverted recombinant ferritin, bovine serum albumin and a substrate only control. Samples were incubated with a TMB substrate solution for 10 minutes at a pH of 5.6. Absorbance readings were taken at the 10 minute time-point at a wavelength of 650 nm. An ANOVA (analysis of variants) was performed upon the values to determine that there was statistical difference in the data gathered (based off of three replicates). A t-test was then performed which determined that the * columns are significantly different from the ** column (p=0.0012). Neither * column is significantly different from each other (p=0.67).</p>
The goal of our project is to design a biosensor to rapidly identify cattle known as super shedders.We are building a DNA-based biosensor, as it is more reliable and cheaper than a protein-based sensor; antibodies are expensive and the proteins that they target can get degraded during the sample preparation, whereas DNA is much more stable. A DNA-based sensor also enabled us to target a broader range of harmful E.coli.
Can we detect DNA with specificity?
We ordered 60mer FAM-labeled [A] (target sequence for TALEA) and FAM-labeled [B] (target sequence for TALEB) oligoes and hybridized them with their reverse complement oligo to make double stranded pieces of DNA containing the target sequence of our TALEs. Using these target sequences and following the TALE Nitorcellulose Functionality Assay, we showed that TALEs bind their target sequence. We incubated Ferritin fused to an Ecoil to TALE fused to a Kcoil to make the ferriTALE complex. The complex was then blotted on strips of nitrocellulose paper. The strips were then blocked with milk and soaked in the appropriate DNA solution. Finally, the strips were washed and imaged. We showed that not only TALEs bind DNA (figure 24 and 25), they are also specific for their own target site (Figure 26).