Team:Evry/References

From 2013.igem.org

(Difference between revisions)
Line 21: Line 21:
<li>Nicolas, G. (2004). <i>Hepcidin, a candidate modifier of the hemochromatosis phenotype in mice.</i> Blood 103, 2841–2843.
<li>Nicolas, G. (2004). <i>Hepcidin, a candidate modifier of the hemochromatosis phenotype in mice.</i> Blood 103, 2841–2843.
-
<a href=http://bloodjournal.hematologylibrary.org/content/103/7/2841.full.pdf+html
+
<a href="http://bloodjournal.hematologylibrary.org/content/103/7/2841.full.pdf+html
-
“target='_blank'>(link)</a>
+
"target='_blank'>(link)</a>
<li>Nicolas, G., Bennoun, M., Devaux, I., Beaumont, C., Grandchamp, B., Kahn, A., and Vaulont, S. (2001). <i>From the Cover: Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice.</i> Proceedings of the National Academy of Sciences 98, 8780–8785.
<li>Nicolas, G., Bennoun, M., Devaux, I., Beaumont, C., Grandchamp, B., Kahn, A., and Vaulont, S. (2001). <i>From the Cover: Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice.</i> Proceedings of the National Academy of Sciences 98, 8780–8785.
-
<a href=http://www.pnas.org/content/98/15/8780.full.pdf+html
+
<a href="http://www.pnas.org/content/98/15/8780.full.pdf+html
-
target='_blank'>(link)</a><br>
+
"target='_blank'>(link)</a><br>
<li>Pantopoulos, K., Porwal, S.K., Tartakoff, A., and Devireddy, L. (2012). <i>Mechanisms of Mammalian Iron Homeostasis.</i> Biochemistry 51, 5705–5724.
<li>Pantopoulos, K., Porwal, S.K., Tartakoff, A., and Devireddy, L. (2012). <i>Mechanisms of Mammalian Iron Homeostasis.</i> Biochemistry 51, 5705–5724.
Line 35: Line 35:
<li>Viatte, L. (2006). <i>Chronic hepcidin induction causes hyposideremia and alters the pattern of cellular iron accumulation in hemochromatotic mice.</i> Blood 107, 2952–2958.
<li>Viatte, L. (2006). <i>Chronic hepcidin induction causes hyposideremia and alters the pattern of cellular iron accumulation in hemochromatotic mice.</i> Blood 107, 2952–2958.
-
<a href=http://bloodjournal.hematologylibrary.org/content/107/7/2952.full.pdf+html
+
<a href="http://bloodjournal.hematologylibrary.org/content/107/7/2952.full.pdf+html
-
target='_blank'>(link)</a><br></p>
+
"target='_blank'>(link)</a><br></p>
</ul>
</ul>
Line 43: Line 43:
<p><ul><li>Ahmad, R., Brandsdal, B.O., Michaud-Soret, I., and Willassen, N.-P. (2009). <i>Ferric uptake regulator protein: Binding free energy calculations and per-residue free energy decomposition.</i> Proteins: Structure, Function, and Bioinformatics 75, 373–386.
<p><ul><li>Ahmad, R., Brandsdal, B.O., Michaud-Soret, I., and Willassen, N.-P. (2009). <i>Ferric uptake regulator protein: Binding free energy calculations and per-residue free energy decomposition.</i> Proteins: Structure, Function, and Bioinformatics 75, 373–386.
-
<a href=“http://onlinelibrary.wiley.com/doi/10.1002/prot.22247/pdf
+
<a href="http://onlinelibrary.wiley.com/doi/10.1002/prot.22247/pdf
-
target=‘_blank'>(link)</a>
+
"target=‘_blank'>(link)</a>
<li>Andrews, S.C., Robinson, A.K., and Rodríguez-Quiñones, F. (2003). <i>Bacterial iron homeostasis.</i> FEMS Microbiol. Rev. 27, 215–237.
<li>Andrews, S.C., Robinson, A.K., and Rodríguez-Quiñones, F. (2003). <i>Bacterial iron homeostasis.</i> FEMS Microbiol. Rev. 27, 215–237.
-
<a href=“http://cid.oxfordjournals.org/content/46/Supplement_2/S104.full.pdf+htmlonlinelibrary.wiley.com/doi/10.1016/S0168-6445%2803%2900055-X/pdf” target=‘_blank'>(link)</a>
+
<a href="http://cid.oxfordjournals.org/content/46/Supplement_2/S104.full.pdf+htmlonlinelibrary.wiley.com/doi/10.1016/S0168-6445%2803%2900055-X/pdf" target=‘_blank'>(link)</a>
<li>Escolar, L. , Pérez-Martín, J., and De Lorenzo, V. (1991). <i>Opening the Iron Box: Transcriptional Metalloregulation by the Fur Protein.</i> Journal of Bacteriology 181,20.
<li>Escolar, L. , Pérez-Martín, J., and De Lorenzo, V. (1991). <i>Opening the Iron Box: Transcriptional Metalloregulation by the Fur Protein.</i> Journal of Bacteriology 181,20.
-
<a href=“http://jb.asm.org/content/181/20/6223.full.pdf+html” target=‘_blank'>(link)</a>
+
<a href="http://jb.asm.org/content/181/20/6223.full.pdf+html" target=‘_blank'>(link)</a>
<li>Guerinot, M.L. (1994). <i>Microbial iron transport. </i>  Annu. Rev. Microbiol. 48, 743–772.
<li>Guerinot, M.L. (1994). <i>Microbial iron transport. </i>  Annu. Rev. Microbiol. 48, 743–772.
Line 57: Line 57:
<li>Pecqueur, L. (2006). <i>Structural Changes of Escherichia coli Ferric Uptake Regulator during Metal-dependent Dimerization and Activation Explored by NMR and X-ray Crystallography. </i> Journal of Biological Chemistry 281, 21286–21295.
<li>Pecqueur, L. (2006). <i>Structural Changes of Escherichia coli Ferric Uptake Regulator during Metal-dependent Dimerization and Activation Explored by NMR and X-ray Crystallography. </i> Journal of Biological Chemistry 281, 21286–21295.
-
<a href=“http://www.jbc.org/content/281/30/21286.full.pdf+html” target=‘_blank'>(link)</a>
+
<a href="http://www.jbc.org/content/281/30/21286.full.pdf+html" target=‘_blank'>(link)</a>
<li>Schilling, C.H., Held, L., Torre, M., and Saier, M.H., Jr (2000). <i>GRASP-DNA: a web application to screen prokaryotic genomes for specific DNA-binding sites and repeat motifs. </i>  J. Mol. Microbiol. Biotechnol. 2, 495–500.
<li>Schilling, C.H., Held, L., Torre, M., and Saier, M.H., Jr (2000). <i>GRASP-DNA: a web application to screen prokaryotic genomes for specific DNA-binding sites and repeat motifs. </i>  J. Mol. Microbiol. Biotechnol. 2, 495–500.
-
<a href=“http://www.horizonpress.com/backlist/jmmb/v/v2/v2n4/22.pdf” target=‘_blank'>(link)</a>
+
<a href="http://www.horizonpress.com/backlist/jmmb/v/v2/v2n4/22.pdf" target=‘_blank'>(link)</a>
<li>Tiss, A., Barre, O., Michaud-Soret, I., and Forest, E. (2005). <i>Characterization of the DNA-binding site in the ferric uptake regulator protein from Escherichia coli by UV crosslinking and mass spectrometry. </i>  FEBS Letters 579, 5454–5460.
<li>Tiss, A., Barre, O., Michaud-Soret, I., and Forest, E. (2005). <i>Characterization of the DNA-binding site in the ferric uptake regulator protein from Escherichia coli by UV crosslinking and mass spectrometry. </i>  FEBS Letters 579, 5454–5460.
-
<a href=“http://ac.els-cdn.com/S0014579305010860/1-s2.0-S0014579305010860-main.pdf?_tid=a7f62652-116b-11e3-82b4-00000aab0f27&acdnat=1377864162_b8c44ccc0b08ec2dde05b76867718045” target=‘_blank'>(link)</a>
+
<a href="http://ac.els-cdn.com/S0014579305010860/1-s2.0-S0014579305010860-main.pdf?_tid=a7f62652-116b-11e3-82b4-00000aab0f27&acdnat=1377864162_b8c44ccc0b08ec2dde05b76867718045" target=‘_blank'>(link)</a>
<li>Tsolis, R., Baumler, A.J., Stojiljkovic, I., and Heffron, F. (1995). <i>Fur regulon of Salmonella typhimurium: identification of new iron-regulated genes. </i>  Journal of Bacteriology 177, 4628–4637.
<li>Tsolis, R., Baumler, A.J., Stojiljkovic, I., and Heffron, F. (1995). <i>Fur regulon of Salmonella typhimurium: identification of new iron-regulated genes. </i>  Journal of Bacteriology 177, 4628–4637.
-
<a href=“http://jb.asm.org/content/177/16/4628.full.pdf+html” target=‘_blank'>(link)</a>
+
<a href="http://jb.asm.org/content/177/16/4628.full.pdf+html" target=‘_blank'>(link)</a>
<li>Valdebenito, M., Crumbliss, A.L., Winkelmann, G., and Hantke, K. (2006). <i>Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917. </i>  International Journal of Medical Microbiology 296, 513–520.
<li>Valdebenito, M., Crumbliss, A.L., Winkelmann, G., and Hantke, K. (2006). <i>Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917. </i>  International Journal of Medical Microbiology 296, 513–520.
 +
<li>Visca, P., Leoni, L., Wilson, M.J., and Lamont, I.L. (2002). <i>Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. </i>  Mol. Microbiol. 45, 1177–1190.
<li>Visca, P., Leoni, L., Wilson, M.J., and Lamont, I.L. (2002). <i>Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. </i>  Mol. Microbiol. 45, 1177–1190.
-
<a href=“http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2958.2002.03088.x/pdf” target=‘_blank'>(link)</a>
+
<a href="http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2958.2002.03088.x/pdf" target=‘_blank'>(link)</a>
<li>Zhang, Z., Gosset, G., Barabote, R., Gonzalez, C.S., Cuevas, W.A., and Saier, M.H. (2005). <i>Functional Interactions between the Carbon and Iron Utilization Regulators, Crp and Fur, in Escherichia coli. </i>  Journal of Bacteriology 187, 980–990.</p>  
<li>Zhang, Z., Gosset, G., Barabote, R., Gonzalez, C.S., Cuevas, W.A., and Saier, M.H. (2005). <i>Functional Interactions between the Carbon and Iron Utilization Regulators, Crp and Fur, in Escherichia coli. </i>  Journal of Bacteriology 187, 980–990.</p>  
-
<a href=“http://jb.asm.org/content/187/3/980.full.pdf+html” target=‘_blank'>(link)</a>
+
<a href="http://jb.asm.org/content/187/3/980.full.pdf+html" target=‘_blank'>(link)</a>
Line 85: Line 86:
<li>Matzanke, B.F. <i>Siderophores and Iron Metabolism - Structures, Functions, Role in Infection and Potential as a Novel Class of Antibiotics. </i>
<li>Matzanke, B.F. <i>Siderophores and Iron Metabolism - Structures, Functions, Role in Infection and Potential as a Novel Class of Antibiotics. </i>
-
<a href=“http://www.chemistry.uoc.gr/biointensive/Matzanke/New/sidscript_dat1200.pdf” target=‘_blank'>(link)</a>
+
<a href="http://www.chemistry.uoc.gr/biointensive/Matzanke/New/sidscript_dat1200.pdf" target=‘_blank'>(link)</a>
Line 91: Line 92:
<li>Arribas, B., Rodríguez-Cabezas, M., Camuesco, D., Comalada, M., Bailón, E., Utrilla, P., Nieto, A., Concha, A., Zarzuelo, A., and Gálvez, J. (2009). <i>A probiotic strain of Escherichia coli , Nissle 1917, given orally exerts local and systemic anti-inflammatory effects in lipopolysaccharide-induced sepsis in mice. </i> British Journal of Pharmacology 157, 1024–1033.
<li>Arribas, B., Rodríguez-Cabezas, M., Camuesco, D., Comalada, M., Bailón, E., Utrilla, P., Nieto, A., Concha, A., Zarzuelo, A., and Gálvez, J. (2009). <i>A probiotic strain of Escherichia coli , Nissle 1917, given orally exerts local and systemic anti-inflammatory effects in lipopolysaccharide-induced sepsis in mice. </i> British Journal of Pharmacology 157, 1024–1033.
-
<a href=“http://onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.2009.00270.x/pdf” target=‘_blank'>(link)</a>
+
<a href="http://onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.2009.00270.x/pdf" target=‘_blank'>(link)</a>
Line 102: Line 103:
<li>Hancock, V., Dahl, M., and Klemm, P. (2010). <i>Probiotic Escherichia coli strain Nissle 1917 outcompetes intestinal pathogens during biofilm formation. </i> Journal of Medical Microbiology 59, 392–399.
<li>Hancock, V., Dahl, M., and Klemm, P. (2010). <i>Probiotic Escherichia coli strain Nissle 1917 outcompetes intestinal pathogens during biofilm formation. </i> Journal of Medical Microbiology 59, 392–399.
-
<a href=“http://jmm.sgmjournals.org/content/59/4/392.full.pdf+html” target=‘_blank'>(link)</a>
+
<a href="http://jmm.sgmjournals.org/content/59/4/392.full.pdf+html" target=‘_blank'>(link)</a>
Line 110: Line 111:
<li>Skaar, E.P. (2010). <i>The Battle for Iron between Bacterial Pathogens and Their Vertebrate Hosts. </i>  PLoS Pathogens 6, e1000949.
<li>Skaar, E.P. (2010). <i>The Battle for Iron between Bacterial Pathogens and Their Vertebrate Hosts. </i>  PLoS Pathogens 6, e1000949.
-
<a href=“http://www.plospathogens.org/article/fetchObject.action?uri=info%3Adoi%2F10.1371%2Fjournal.ppat.1000949&representation=PDF” target=‘_blank'>(link)</a>
+
<a href="http://www.plospathogens.org/article/fetchObject.action?uri=info%3Adoi%2F10.1371%2Fjournal.ppat.1000949&representation=PDF" target=‘_blank'>(link)</a>

Revision as of 12:30, 30 August 2013

Iron coli project

References

Biology

Ajouter (free article + lien si dispo)

Iron metabolism and iron associated diseases in humans

  • Casarrubea, D., Viatte, L., Hallas, T., Vasanthakumar, A., Eisenstein, R.S., Schümann, K., Hentze, M.W., and Galy, B. (2013). Abnormal body iron distribution and erythropoiesis in a novel mouse model with inducible gain of iron regulatory protein (IRP)-1 function. Journal of Molecular Medicine 91, 871–881. (link)
  • Ganz, T., and Nemeth, E. (2011). Hepcidin and Disorders of Iron Metabolism. Annual Review of Medicine 62, 347–360.
  • Hentze, M.W., Muckenthaler, M.U., Galy, B., and Camaschella, C. (2010). Two to Tango: Regulation of Mammalian Iron Metabolism. Cell 142, 24–38. (link)
  • Nicolas, G. (2004). Hepcidin, a candidate modifier of the hemochromatosis phenotype in mice. Blood 103, 2841–2843. (link)
  • Nicolas, G., Bennoun, M., Devaux, I., Beaumont, C., Grandchamp, B., Kahn, A., and Vaulont, S. (2001). From the Cover: Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proceedings of the National Academy of Sciences 98, 8780–8785. (link)
  • Pantopoulos, K., Porwal, S.K., Tartakoff, A., and Devireddy, L. (2012). Mechanisms of Mammalian Iron Homeostasis. Biochemistry 51, 5705–5724.
  • Viatte, L. (2006). Chronic hepcidin induction causes hyposideremia and alters the pattern of cellular iron accumulation in hemochromatotic mice. Blood 107, 2952–2958. (link)

FUR and iron metabolism in bacteria

  • Ahmad, R., Brandsdal, B.O., Michaud-Soret, I., and Willassen, N.-P. (2009). Ferric uptake regulator protein: Binding free energy calculations and per-residue free energy decomposition. Proteins: Structure, Function, and Bioinformatics 75, 373–386. (link)
  • Andrews, S.C., Robinson, A.K., and Rodríguez-Quiñones, F. (2003). Bacterial iron homeostasis. FEMS Microbiol. Rev. 27, 215–237. (link)
  • Escolar, L. , Pérez-Martín, J., and De Lorenzo, V. (1991). Opening the Iron Box: Transcriptional Metalloregulation by the Fur Protein. Journal of Bacteriology 181,20. (link)
  • Guerinot, M.L. (1994). Microbial iron transport. Annu. Rev. Microbiol. 48, 743–772.
  • Oglesby-Sherrouse, A.G., and Murphy, E.R. (2013). Iron-responsive bacterial small RNAs: variations on a theme. Metallomics 5, 276.
  • Pecqueur, L. (2006). Structural Changes of Escherichia coli Ferric Uptake Regulator during Metal-dependent Dimerization and Activation Explored by NMR and X-ray Crystallography. Journal of Biological Chemistry 281, 21286–21295. (link)
  • Schilling, C.H., Held, L., Torre, M., and Saier, M.H., Jr (2000). GRASP-DNA: a web application to screen prokaryotic genomes for specific DNA-binding sites and repeat motifs. J. Mol. Microbiol. Biotechnol. 2, 495–500. (link)
  • Tiss, A., Barre, O., Michaud-Soret, I., and Forest, E. (2005). Characterization of the DNA-binding site in the ferric uptake regulator protein from Escherichia coli by UV crosslinking and mass spectrometry. FEBS Letters 579, 5454–5460. (link)
  • Tsolis, R., Baumler, A.J., Stojiljkovic, I., and Heffron, F. (1995). Fur regulon of Salmonella typhimurium: identification of new iron-regulated genes. Journal of Bacteriology 177, 4628–4637. (link)
  • Valdebenito, M., Crumbliss, A.L., Winkelmann, G., and Hantke, K. (2006). Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917. International Journal of Medical Microbiology 296, 513–520.
  • Visca, P., Leoni, L., Wilson, M.J., and Lamont, I.L. (2002). Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol. Microbiol. 45, 1177–1190. (link)
  • Zhang, Z., Gosset, G., Barabote, R., Gonzalez, C.S., Cuevas, W.A., and Saier, M.H. (2005). Functional Interactions between the Carbon and Iron Utilization Regulators, Crp and Fur, in Escherichia coli. Journal of Bacteriology 187, 980–990.

    (link)

    Siderophors

  • Hider, R.C. Siderophore mediated absorption of iron. In Siderophores from Microorganisms and Plants. (Berlin, Heidelberg: Springer Berlin Heidelberg), pp. 25–87.
  • Matzanke, B.F. Siderophores and Iron Metabolism - Structures, Functions, Role in Infection and Potential as a Novel Class of Antibiotics. (link)

    Microbiot, probiotic, safety

  • Arribas, B., Rodríguez-Cabezas, M., Camuesco, D., Comalada, M., Bailón, E., Utrilla, P., Nieto, A., Concha, A., Zarzuelo, A., and Gálvez, J. (2009). A probiotic strain of Escherichia coli , Nissle 1917, given orally exerts local and systemic anti-inflammatory effects in lipopolysaccharide-induced sepsis in mice. British Journal of Pharmacology 157, 1024–1033. (link)
  • Bermúdez-Humarán, L.G., Aubry, C., Motta, J.-P., Deraison, C., Steidler, L., Vergnolle, N., Chatel, J.-M., and Langella, P. (2013). Engineering lactococci and lactobacilli for human health. Current Opinion in Microbiology 16, 278–283.
  • Deriu, E., Liu, J.Z., Pezeshki, M., Edwards, R.A., Ochoa, R.J., Contreras, H., Libby, S.J., Fang, F.C., and Raffatellu, M. (2013). Probiotic Bacteria Reduce Salmonella Typhimurium Intestinal Colonization by Competing for Iron. Cell Host & Microbe 14, 26–37.
  • Hancock, V., Dahl, M., and Klemm, P. (2010). Probiotic Escherichia coli strain Nissle 1917 outcompetes intestinal pathogens during biofilm formation. Journal of Medical Microbiology 59, 392–399. (link)
  • Saarela, M., Mogensen, G., Fondén, R., Mättö, J., and Mattila-Sandholm, T. (2000). Probiotic bacteria: safety, functional and technological properties. Journal of Biotechnology 84, 197–215.
  • Skaar, E.P. (2010). The Battle for Iron between Bacterial Pathogens and Their Vertebrate Hosts. PLoS Pathogens 6, e1000949. (link)
  • Snydman, D.R. (2008). The Safety of Probiotics. Clinical Infectious Diseases 46, S104–S111. (link)

    Protocols

  • Louden, B.C., Haarmann, D., and Lynne, A. (2011). Use of Blue Agar CAS Assay for Siderophore Detection. Journal of Microbiology & Biology Education 12,.

    Modeling

  • B. Hari, S. Bakalis, P. Fryer (2012). Computational Modeling and Simulation of the Human Duodenum

    Philosophy

  • G. Simondon (1958). Du mode d'existence des objets techniques (On the Mode of Existence of Technical Objects)