Team:Calgary

From 2013.igem.org

(Difference between revisions)
Line 71: Line 71:
<section id="Overview">
<section id="Overview">
<h2>Our Project</h2>
<h2>Our Project</h2>
-
<p>
+
<p>Outbreaks of foodborne illnesses are a growing problem in our lives. In 2011, the Centers for Disease Control and Prevention (CDC) in the United States identified 767 outbreaks of foodborne illnesses affecting nearly 14,000 people. Pathogenic <i>E. coli</i> was one of the most common causes of these outbreaks. In Alberta, we experienced a foodborne disease outbreak in late 2012. This outbreak was the result of pathogenic <i>E. coli</i> serotype O157:H7 and led to the largest meat recall in Canadian history. Outbreaks like these cause death, hospitalizations, massive economic losses and an overall loss of consumer confidence in food safety. Due to the time it takes to culture <i>E. coli</i> and amplify target gene sequences, current testing methods take a long time to complete and can only identify contamination many hours after the meat has been processed.</p>
-
Outbreaks of foodborne illnesses are a growing problem in our lives. In 2011, the Centers for Disease Control and Prevention (CDC) in the United States, identified 767 outbreaks affecting nearly 14,000 people of foodborne illnesses. Of these, pathogenic <i>E. coli</i> was a recurring theme in many of these outbreaks. In Alberta, we recently experienced our own foodborne disease outbreak in late 2012. This outbreak was the result of pathogenic <i>E. coli</i> serotype O157 and led to significant food recall alongside many hospitalizations, deaths, massive economic losses and an overall loss of consumer confidence in food safety. Current detection methods require long incubation times to amplify <i>E. coli</i> in the sample and followed by amplification to verify the presence of known genes that are associated with pathogenic <i>E. coli</i>.
+
<p>One of the factors that amplifies the risk of <i>E. coli</i> outbreaks is the lack of a rapid, on-site detection method. In response, the University of Calgary 2013 iGEM Collegiate team is using synthetic biology to develop a system to rapidly detect the presence of pathogenic <i>E. coli</i> in the beef industry. By using engineered biological nanoparticles and DNA binding proteins, we can specifically detect pathogenic DNA sequences. Our biosensor functions at the genomic level to detect the presence of pathogenic <i>E. coli</i> in a sample. This system allows us to quickly identify contamination during meat processing and also provides the ability to prescreen cattle to limit potential sources of contamination before cattle enter the processing plant. Our system not only provides a powerful new tool for food safety, but also has the potential to act as a platform for the rapid detection of target organisms. These tests could hugely impact a myriad of industry applications ranging from the everyday, large-scale use in food safety testing and medical screening to the specific use in detection and monitoring of biological weapons and hazards.</p>
-
</p>
+
-
<p>
+
-
One of the contributing factors connected with the outbreak in Alberta was the lack of rapid on-site detection systems available. Thus, the University of Calgary 2013 iGEM Collegiate team is using synthetic biology to develop a system to rapidly detect the presence of pathogenic <i>E. coli</i> in the beef industry. By using engineered biological nanoparticles and DNA binding proteins we can specifically detect pathogenic DNA sequences. Our biosensor functions at the genomic level to detect the presence or absence of pathogenic <i>E. coli</i> in a given sample. This system allows us to pinpoint contamination during meat processing and also provides the ability to prescreen cattle in a preventative way to limit potential sources of contamination from the processing chain. Our system provides a powerful new tool for food safety, but also shows promise as a platform for the rapid detection of target organisms that are identified as key targets in a myriad of sectors from health to environment to biosecurity.
+
-
</p>
+
</section>
</section>

Revision as of 02:47, 28 September 2013

Our Project

Outbreaks of foodborne illnesses are a growing problem in our lives. In 2011, the Centers for Disease Control and Prevention (CDC) in the United States identified 767 outbreaks of foodborne illnesses affecting nearly 14,000 people. Pathogenic E. coli was one of the most common causes of these outbreaks. In Alberta, we experienced a foodborne disease outbreak in late 2012. This outbreak was the result of pathogenic E. coli serotype O157:H7 and led to the largest meat recall in Canadian history. Outbreaks like these cause death, hospitalizations, massive economic losses and an overall loss of consumer confidence in food safety. Due to the time it takes to culture E. coli and amplify target gene sequences, current testing methods take a long time to complete and can only identify contamination many hours after the meat has been processed.

One of the factors that amplifies the risk of E. coli outbreaks is the lack of a rapid, on-site detection method. In response, the University of Calgary 2013 iGEM Collegiate team is using synthetic biology to develop a system to rapidly detect the presence of pathogenic E. coli in the beef industry. By using engineered biological nanoparticles and DNA binding proteins, we can specifically detect pathogenic DNA sequences. Our biosensor functions at the genomic level to detect the presence of pathogenic E. coli in a sample. This system allows us to quickly identify contamination during meat processing and also provides the ability to prescreen cattle to limit potential sources of contamination before cattle enter the processing plant. Our system not only provides a powerful new tool for food safety, but also has the potential to act as a platform for the rapid detection of target organisms. These tests could hugely impact a myriad of industry applications ranging from the everyday, large-scale use in food safety testing and medical screening to the specific use in detection and monitoring of biological weapons and hazards.