Team:Uppsala/results

From 2013.igem.org

(Difference between revisions)
Line 234: Line 234:
<p id="fig-text"><i><b>Figure 1:</b>SDS-page and western blot. Expression of Tyrosine ammonia lyase with constitutive promotors. The negative control is empty, showing that there is no natural protein in e-coli with the same attributes.</i><br><br></p>
<p id="fig-text"><i><b>Figure 1:</b>SDS-page and western blot. Expression of Tyrosine ammonia lyase with constitutive promotors. The negative control is empty, showing that there is no natural protein in e-coli with the same attributes.</i><br><br></p>
 +
<table>
 +
<tr><td class="pic_col_results_pc"><img class="results_pic_pc" src="https://static.igem.org/mediawiki/2013/e/ef/Uppsala_char_coumaric-acid_plasmid.png"></td><td class="fig-text"><i><b>Figure 3.</b> Graph showing the HPLC result of a sample prepared from e coli expressing tyrosine ammonia lyase. Reverse phase HPLC with a C18 matrix was used. The peak for p-coumaric acid can be seen ~9 min, as shown by the standard sample below.</i> </td></tr>
 +
<tr><td class="pic_col_results_pc"><img class="results_pic_pc" src="https://static.igem.org/mediawiki/2013/b/be/Uppsala_char_coumaric-acid_standard.png"></td><td class="fig-text"><i><b>Figure 4.</b> Graph showing the HPLC result of a sample standard with p-coumaric acid</i></td></tr>
 +
<tr><td class="pic_col_results_pc"><img class="results_pic_pc" src="https://static.igem.org/mediawiki/2013/4/4f/Uppsala_char_coumaric-acid_blank.png"></td><td class="fig-text"><i><b>Figure 5.</b> E-coli culture injected to the hplc without our biobrick tyrosine ammonia lyase. Here we can see that there is originally no peak at 9 minutes.</i> </td></tr>
 +
</table>
             </div>
             </div>

Revision as of 21:16, 1 October 2013

Uppsala iGEM 2013

Results and achievement"

Achievement

Successfully managed to clone and sequence verify totally new biobricks.
Improved on already existing biobricks.
Successful characterization of several biobricks.
Helped another iGEM team.
Made a successful human practice.
Created a new standard backbone for lactobacillus.
Useful mathematical modelling of metabolic pathways
Completed our chromoprotein collection from previous years

Results

P-coumaric acid

We managed to clone out and biobrick tyrosine ammonia lyase and verify the biobrick by sequencing. Also we did succeful characterization on this part, showing that it works as expected. We managed to express our enzyme and detect it in a western blot, and also detect our metabolite in both spectrophotometry and hplc. The biobrick was characterized in e-coli d5halpha and e-coli nissle. For detailed information about the characterisation methods, see the protocol section.

1. Positive control
2. TAL with Cp8 promotor
3. TAL with J23110 promotor
4. Negative control

Figure 1:SDS-page and western blot. Expression of Tyrosine ammonia lyase with constitutive promotors. The negative control is empty, showing that there is no natural protein in e-coli with the same attributes.

Figure 3. Graph showing the HPLC result of a sample prepared from e coli expressing tyrosine ammonia lyase. Reverse phase HPLC with a C18 matrix was used. The peak for p-coumaric acid can be seen ~9 min, as shown by the standard sample below.
Figure 4. Graph showing the HPLC result of a sample standard with p-coumaric acid
Figure 5. E-coli culture injected to the hplc without our biobrick tyrosine ammonia lyase. Here we can see that there is originally no peak at 9 minutes.