Team:ATOMS-Turkiye/Project/Module1/Goals
From 2013.igem.org
(→Goals & Challenges) |
(→Goals & Challenges) |
||
Line 6: | Line 6: | ||
1· '' To detect cancer cells specifically using the nanofactory complex.'' | 1· '' To detect cancer cells specifically using the nanofactory complex.'' | ||
- | Firstly, we had to devise a system which would detect the cancer cells. This challenge was solved by searching for a specific marker present on cancer cells; this was EpCaM | + | Firstly, we had to devise a system which would detect the cancer cells. This challenge was solved by searching for a specific marker present on cancer cells; this was EpCaM[1]. EpCAM markers are present on both healthy cells and cancer cells. However according to an article[1] the number of EpCAM present on cancer cells are 100 times more compared to a healthy cell. |
Nanofactories were the complexes we aimed to detect cancer cells. This complex consists of an Anti-EpCAM antibody that would bind to EpCAM antigens present on the cancer cells.We designed our bacteria as an effective alternative to presenting antibody parts of our nanofactory on its surface. It was an obligation for us to use anti-EpCAM for binding. While we were researching on EpCAM, we found anti-EpCAM’S active domain called C215. C215 does the same job as Anti-Epcam though it is smaller than anti-EpCAM. Therefore, our choice was C215. | Nanofactories were the complexes we aimed to detect cancer cells. This complex consists of an Anti-EpCAM antibody that would bind to EpCAM antigens present on the cancer cells.We designed our bacteria as an effective alternative to presenting antibody parts of our nanofactory on its surface. It was an obligation for us to use anti-EpCAM for binding. While we were researching on EpCAM, we found anti-EpCAM’S active domain called C215. C215 does the same job as Anti-Epcam though it is smaller than anti-EpCAM. Therefore, our choice was C215. | ||
With presenting C215 on the outer membrane, we designed a bacteria called “nanobacterium”. This bacteria will find the cancer cells and accumulate around them, which will call our bacteria towards the cancer cells. | With presenting C215 on the outer membrane, we designed a bacteria called “nanobacterium”. This bacteria will find the cancer cells and accumulate around them, which will call our bacteria towards the cancer cells. | ||
Line 12: | Line 12: | ||
2· ''Producing AI-2 by our nanofactory without cease'' | 2· ''Producing AI-2 by our nanofactory without cease'' | ||
- | After detection we | + | After detection we needed a system to call the bacteria toward the cancer cells and therefore we used a quorum sensing material called Auto Inducer-2(AI-2). AI-2 produced by our nanofactories, call our bacteria towards the cancer cells which move via the taxis method. |
- | 3· ''Expression of cancer specific apoptotic protein by the bacteria | + | 3· ''Expression of cancer specific apoptotic protein by the bacteria due to AI-2 concentration'' |
- | We | + | We had to trigger the cancer killer protein expressioning mechanism with a stimulant. This was a serious problem. We solved this challenge by using intentive AI-2 concentration near by of cancer cells. The bacteria will sytnthesize our protein when AI-2 concentration reaches to a certain level. When the bacteria arrive to the intensive concentration of AI-2, a mechanism is triggered which enable the bacteria to produce our killer protein. |
4· ''Secreting the killer protein out of the cell with signal peptides.'' | 4· ''Secreting the killer protein out of the cell with signal peptides.'' | ||
- | We used HLYA signal peptide to secrete our apoptotic proteins from the bacteria. We also wished to use TorA signal peptide as an alternative to HLYA | + | We used HLYA signal peptide to secrete our apoptotic proteins from the bacteria. We also wished to use TorA signal peptide as an alternative to HLYA [3]. While using TorA, our proteins were secreted to the periplasm and not to the extra cellular matrix. As a solution to this problem we used a chemical substance which pokes holes on the outer membrane proteins and release our proteins inside. |
Revision as of 22:43, 16 May 2014