Team:Evry/References

From 2013.igem.org

(Difference between revisions)
Line 14: Line 14:
<p><li>Ganz, T., and Nemeth, E. (2011). Hepcidin and Disorders of Iron Metabolism. Annual Review of Medicine 62, 347–360.
<p><li>Ganz, T., and Nemeth, E. (2011). Hepcidin and Disorders of Iron Metabolism. Annual Review of Medicine 62, 347–360.
-
Hentze, M.W., Muckenthaler, M.U., Galy, B., and Camaschella, C. (2010). Two to Tango: Regulation of Mammalian Iron Metabolism. Cell 142, 24–38.
+
 
 +
<li>Hentze, M.W., Muckenthaler, M.U., Galy, B., and Camaschella, C. (2010). Two to Tango: Regulation of Mammalian Iron Metabolism. Cell 142, 24–38.
<br>
<br>
 +
<li>Nicolas, G. (2004). Hepcidin, a candidate modifier of the hemochromatosis phenotype in mice. Blood 103, 2841–2843.<br>
<li>Nicolas, G. (2004). Hepcidin, a candidate modifier of the hemochromatosis phenotype in mice. Blood 103, 2841–2843.<br>
 +
<li>Nicolas, G., Bennoun, M., Devaux, I., Beaumont, C., Grandchamp, B., Kahn, A., and Vaulont, S. (2001). From the Cover: Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proceedings of the National Academy of Sciences 98, 8780–8785.<br>
<li>Nicolas, G., Bennoun, M., Devaux, I., Beaumont, C., Grandchamp, B., Kahn, A., and Vaulont, S. (2001). From the Cover: Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proceedings of the National Academy of Sciences 98, 8780–8785.<br>
 +
<li>Pantopoulos, K., Porwal, S.K., Tartakoff, A., and Devireddy, L. (2012). Mechanisms of Mammalian Iron Homeostasis. Biochemistry 51, 5705–5724.<br>
<li>Pantopoulos, K., Porwal, S.K., Tartakoff, A., and Devireddy, L. (2012). Mechanisms of Mammalian Iron Homeostasis. Biochemistry 51, 5705–5724.<br>
 +
 +
<li>Tsolis, R., Baumler, A.J., Stojiljkovic, I., and Heffron, F. (1995). Fur regulon of Salmonella typhimurium: identification of new iron-regulated genes. Journal of Bacteriology 177, 4628–4637.<br>
 +
<li>Viatte, L. (2006). Chronic hepcidin induction causes hyposideremia and alters the pattern of cellular iron accumulation in hemochromatotic mice. Blood 107, 2952–2958.<br></p>
<li>Viatte, L. (2006). Chronic hepcidin induction causes hyposideremia and alters the pattern of cellular iron accumulation in hemochromatotic mice. Blood 107, 2952–2958.<br></p>
Line 28: Line 35:
<li>Deriu, E., Liu, J.Z., Pezeshki, M., Edwards, R.A., Ochoa, R.J., Contreras, H., Libby, S.J., Fang, F.C., and Raffatellu, M. (2013). Probiotic Bacteria Reduce Salmonella Typhimurium Intestinal Colonization by Competing for Iron. Cell Host & Microbe 14, 26–37.<br>
<li>Deriu, E., Liu, J.Z., Pezeshki, M., Edwards, R.A., Ochoa, R.J., Contreras, H., Libby, S.J., Fang, F.C., and Raffatellu, M. (2013). Probiotic Bacteria Reduce Salmonella Typhimurium Intestinal Colonization by Competing for Iron. Cell Host & Microbe 14, 26–37.<br>
 +
 +
<li>Escolar, L. , Pérez-Martín, J., and De Lorenzo, V. (1991). Opening the Iron Box: Transcriptional Metalloregulation by the Fur Protein. Journal of Bacteriology 181,20.
<li>Pecqueur, L. (2006). Structural Changes of Escherichia coli Ferric Uptake Regulator during Metal-dependent Dimerization and Activation Explored by NMR and X-ray Crystallography. Journal of Biological Chemistry 281, 21286–21295.<br>
<li>Pecqueur, L. (2006). Structural Changes of Escherichia coli Ferric Uptake Regulator during Metal-dependent Dimerization and Activation Explored by NMR and X-ray Crystallography. Journal of Biological Chemistry 281, 21286–21295.<br>

Revision as of 09:32, 30 August 2013

Iron coli project

References

Biology

Ajouter (free article + lien si dispo)

Iron metabolism and iron associated diseases in humans

  • Ganz, T., and Nemeth, E. (2011). Hepcidin and Disorders of Iron Metabolism. Annual Review of Medicine 62, 347–360.
  • Hentze, M.W., Muckenthaler, M.U., Galy, B., and Camaschella, C. (2010). Two to Tango: Regulation of Mammalian Iron Metabolism. Cell 142, 24–38.
  • Nicolas, G. (2004). Hepcidin, a candidate modifier of the hemochromatosis phenotype in mice. Blood 103, 2841–2843.
  • Nicolas, G., Bennoun, M., Devaux, I., Beaumont, C., Grandchamp, B., Kahn, A., and Vaulont, S. (2001). From the Cover: Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proceedings of the National Academy of Sciences 98, 8780–8785.
  • Pantopoulos, K., Porwal, S.K., Tartakoff, A., and Devireddy, L. (2012). Mechanisms of Mammalian Iron Homeostasis. Biochemistry 51, 5705–5724.
  • Tsolis, R., Baumler, A.J., Stojiljkovic, I., and Heffron, F. (1995). Fur regulon of Salmonella typhimurium: identification of new iron-regulated genes. Journal of Bacteriology 177, 4628–4637.
  • Viatte, L. (2006). Chronic hepcidin induction causes hyposideremia and alters the pattern of cellular iron accumulation in hemochromatotic mice. Blood 107, 2952–2958.

    FUR, siderophores and iron metabolism in bacteria

  • Ahmad, R., Brandsdal, B.O., Michaud-Soret, I., and Willassen, N.-P. (2009). Ferric uptake regulator protein: Binding free energy calculations and per-residue free energy decomposition. Proteins: Structure, Function, and Bioinformatics 75, 373–386.
  • Deriu, E., Liu, J.Z., Pezeshki, M., Edwards, R.A., Ochoa, R.J., Contreras, H., Libby, S.J., Fang, F.C., and Raffatellu, M. (2013). Probiotic Bacteria Reduce Salmonella Typhimurium Intestinal Colonization by Competing for Iron. Cell Host & Microbe 14, 26–37.
  • Escolar, L. , Pérez-Martín, J., and De Lorenzo, V. (1991). Opening the Iron Box: Transcriptional Metalloregulation by the Fur Protein. Journal of Bacteriology 181,20.
  • Pecqueur, L. (2006). Structural Changes of Escherichia coli Ferric Uptake Regulator during Metal-dependent Dimerization and Activation Explored by NMR and X-ray Crystallography. Journal of Biological Chemistry 281, 21286–21295.
  • Schilling, C.H., Held, L., Torre, M., and Saier, M.H., Jr (2000). GRASP-DNA: a web application to screen prokaryotic genomes for specific DNA-binding sites and repeat motifs. J. Mol. Microbiol. Biotechnol. 2, 495–500.
  • Tiss, A., Barre, O., Michaud-Soret, I., and Forest, E. (2005). Characterization of the DNA-binding site in the ferric uptake regulator protein from Escherichia coli by UV crosslinking and mass spectrometry. FEBS Letters 579, 5454–5460.
  • Valdebenito, M., Crumbliss, A.L., Winkelmann, G., and Hantke, K. (2006). Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917. International Journal of Medical Microbiology 296, 513–520.
  • Visca, P., Leoni, L., Wilson, M.J., and Lamont, I.L. (2002). Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol. Microbiol. 45, 1177–1190.
  • Zhang, Z., Gosset, G., Barabote, R., Gonzalez, C.S., Cuevas, W.A., and Saier, M.H. (2005). Functional Interactions between the Carbon and Iron Utilization Regulators, Crp and Fur, in Escherichia coli. Journal of Bacteriology 187, 980–990.

    Protocols

  • Louden, B.C., Haarmann, D., and Lynne, A. (2011). Use of Blue Agar CAS Assay for Siderophore Detection. Journal of Microbiology & Biology Education 12,.

    Modeling

  • B. Hari, S. Bakalis, P. Fryer (2012). Computational Modeling and Simulation of the Human Duodenum

    Philosophy

  • G. Simondon (1958). Du mode d'existence des objets techniques (On the Mode of Existence of Technical Objects)