Team:Evry/References

From 2013.igem.org

(Difference between revisions)
Line 13: Line 13:
<h3> Iron metabolism and iron associated diseases in humans </h3>
<h3> Iron metabolism and iron associated diseases in humans </h3>
-
<p><li>Ganz, T., and Nemeth, E. (2011). <big>Hepcidin and Disorders of Iron Metabolism.</big> Annual Review of Medicine 62, 347–360.
+
<p><li>Ganz, T., and Nemeth, E. (2011). <i>Hepcidin and Disorders of Iron Metabolism.</i> Annual Review of Medicine 62, 347–360.
-
<li>Hentze, M.W., Muckenthaler, M.U., Galy, B., and Camaschella, C. (2010). <big>Two to Tango: Regulation of Mammalian Iron Metabolism.</big> Cell 142, 24–38.
+
<li>Hentze, M.W., Muckenthaler, M.U., Galy, B., and Camaschella, C. (2010). <i>Two to Tango: Regulation of Mammalian Iron Metabolism.</i> Cell 142, 24–38.
<br>
<br>
-
<li>Nicolas, G. (2004). <big>Hepcidin, a candidate modifier of the hemochromatosis phenotype in mice.</big> Blood 103, 2841–2843.<br>
+
<li>Nicolas, G. (2004). <i>Hepcidin, a candidate modifier of the hemochromatosis phenotype in mice.</i> Blood 103, 2841–2843.<br>
-
<li>Nicolas, G., Bennoun, M., Devaux, I., Beaumont, C., Grandchamp, B., Kahn, A., and Vaulont, S. (2001). <big>From the Cover: Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice.</big> Proceedings of the National Academy of Sciences 98, 8780–8785.<br>
+
<li>Nicolas, G., Bennoun, M., Devaux, I., Beaumont, C., Grandchamp, B., Kahn, A., and Vaulont, S. (2001). <i>From the Cover: Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice.</i> Proceedings of the National Academy of Sciences 98, 8780–8785.<br>
-
<li>Pantopoulos, K., Porwal, S.K., Tartakoff, A., and Devireddy, L. (2012). <big>Mechanisms of Mammalian Iron Homeostasis.</big> Biochemistry 51, 5705–5724.<br>
+
<li>Pantopoulos, K., Porwal, S.K., Tartakoff, A., and Devireddy, L. (2012). <i>Mechanisms of Mammalian Iron Homeostasis.</i> Biochemistry 51, 5705–5724.<br>
-
<li>Viatte, L. (2006). <big>Chronic hepcidin induction causes hyposideremia and alters the pattern of cellular iron accumulation in hemochromatotic mice.</big> Blood 107, 2952–2958.<br></p>
+
<li>Viatte, L. (2006). <i>Chronic hepcidin induction causes hyposideremia and alters the pattern of cellular iron accumulation in hemochromatotic mice.</i> Blood 107, 2952–2958.<br></p>
Line 31: Line 31:
<h3> FUR, siderophores and iron metabolism in bacteria  </h3>
<h3> FUR, siderophores and iron metabolism in bacteria  </h3>
-
<p><li>Ahmad, R., Brandsdal, B.O., Michaud-Soret, I., and Willassen, N.-P. (2009). <big>Ferric uptake regulator protein: Binding free energy calculations and per-residue free energy decomposition.</big> Proteins: Structure, Function, and Bioinformatics 75, 373–386.
+
<p><li>Ahmad, R., Brandsdal, B.O., Michaud-Soret, I., and Willassen, N.-P. (2009). <i>Ferric uptake regulator protein: Binding free energy calculations and per-residue free energy decomposition.</i> Proteins: Structure, Function, and Bioinformatics 75, 373–386.
-
<br><li>Andrews, S.C., Robinson, A.K., and Rodríguez-Quiñones, F. (2003). <big>Bacterial iron homeostasis.</big> FEMS Microbiol. Rev. 27, 215–237.
+
<br><li>Andrews, S.C., Robinson, A.K., and Rodríguez-Quiñones, F. (2003). <i>Bacterial iron homeostasis.</i> FEMS Microbiol. Rev. 27, 215–237.
br>
br>
-
<li>Escolar, L. , Pérez-Martín, J., and De Lorenzo, V. (1991). <big>Opening the Iron Box: Transcriptional Metalloregulation by the Fur Protein.</big> Journal of Bacteriology 181,20.
+
<li>Escolar, L. , Pérez-Martín, J., and De Lorenzo, V. (1991). <i>Opening the Iron Box: Transcriptional Metalloregulation by the Fur Protein.</i> Journal of Bacteriology 181,20.
-
<br><li>Guerinot, M.L. (1994). <big>Microbial iron transport. Annu. Rev. Microbiol. 48, 743–772.
+
<br><li>Guerinot, M.L. (1994). <i>Microbial iron transport. Annu. Rev. Microbiol. 48, 743–772.
-
<br><li>Oglesby-Sherrouse, A.G., and Murphy, E.R. (2013). <big>Iron-responsive bacterial small RNAs: variations on a theme. Metallomics 5, 276.
+
<br><li>Oglesby-Sherrouse, A.G., and Murphy, E.R. (2013). <i>Iron-responsive bacterial small RNAs: variations on a theme. Metallomics 5, 276.
-
<li>Pecqueur, L. (2006). <big>Structural Changes of Escherichia coli Ferric Uptake Regulator during Metal-dependent Dimerization and Activation Explored by NMR and X-ray Crystallography. Journal of Biological Chemistry 281, 21286–21295.<br>
+
<li>Pecqueur, L. (2006). <i>Structural Changes of Escherichia coli Ferric Uptake Regulator during Metal-dependent Dimerization and Activation Explored by NMR and X-ray Crystallography. Journal of Biological Chemistry 281, 21286–21295.<br>
-
<li>Schilling, C.H., Held, L., Torre, M., and Saier, M.H., Jr (2000). <big>GRASP-DNA: a web application to screen prokaryotic genomes for specific DNA-binding sites and repeat motifs. J. Mol. Microbiol. Biotechnol. 2, 495–500.
+
<li>Schilling, C.H., Held, L., Torre, M., and Saier, M.H., Jr (2000). <i>GRASP-DNA: a web application to screen prokaryotic genomes for specific DNA-binding sites and repeat motifs. J. Mol. Microbiol. Biotechnol. 2, 495–500.
<br>
<br>
-
<li>Tiss, A., Barre, O., Michaud-Soret, I., and Forest, E. (2005). <big>Characterization of the DNA-binding site in the ferric uptake regulator protein from Escherichia coli by UV crosslinking and mass spectrometry. FEBS Letters 579, 5454–5460.
+
<li>Tiss, A., Barre, O., Michaud-Soret, I., and Forest, E. (2005). <i>Characterization of the DNA-binding site in the ferric uptake regulator protein from Escherichia coli by UV crosslinking and mass spectrometry. FEBS Letters 579, 5454–5460.
<br>
<br>
-
<li>Tsolis, R., Baumler, A.J., Stojiljkovic, I., and Heffron, F. (1995). <big>Fur regulon of Salmonella typhimurium: identification of new iron-regulated genes. Journal of Bacteriology 177, 4628–4637.<br>
+
<li>Tsolis, R., Baumler, A.J., Stojiljkovic, I., and Heffron, F. (1995). <i>Fur regulon of Salmonella typhimurium: identification of new iron-regulated genes. Journal of Bacteriology 177, 4628–4637.<br>
-
<li>Valdebenito, M., Crumbliss, A.L., Winkelmann, G., and Hantke, K. (2006). <big>Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917. International Journal of Medical Microbiology 296, 513–520.
+
<li>Valdebenito, M., Crumbliss, A.L., Winkelmann, G., and Hantke, K. (2006). <i>Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917. International Journal of Medical Microbiology 296, 513–520.
<br>
<br>
-
<li>Visca, P., Leoni, L., Wilson, M.J., and Lamont, I.L. (2002). <big>Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol. Microbiol. 45, 1177–1190.
+
<li>Visca, P., Leoni, L., Wilson, M.J., and Lamont, I.L. (2002). <i>Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol. Microbiol. 45, 1177–1190.
<br>
<br>
-
<li>Zhang, Z., Gosset, G., Barabote, R., Gonzalez, C.S., Cuevas, W.A., and Saier, M.H. (2005). <big>Functional Interactions between the Carbon and Iron Utilization Regulators, Crp and Fur, in Escherichia coli. Journal of Bacteriology 187, 980–990.<br></p>
+
<li>Zhang, Z., Gosset, G., Barabote, R., Gonzalez, C.S., Cuevas, W.A., and Saier, M.H. (2005). <i>Functional Interactions between the Carbon and Iron Utilization Regulators, Crp and Fur, in Escherichia coli. Journal of Bacteriology 187, 980–990.<br></p>  
<h3> Siderophors </h3>
<h3> Siderophors </h3>
-
<li>Hider, R.C. <big>Siderophore mediated absorption of iron. In Siderophores from Microorganisms and Plants, (Berlin,  
+
<li>Hider, R.C. <i>Siderophore mediated absorption of iron. In Siderophores from Microorganisms and Plants, (Berlin,  
Heidelberg: Springer Berlin Heidelberg), pp. 25–87.
Heidelberg: Springer Berlin Heidelberg), pp. 25–87.
-
<br><li>Matzanke, B.F. <big>Siderophores and Iron Metabolism - Structures, Functions, Role in Infection and Potential as a Novel Class of Antibiotics.
+
<br><li>Matzanke, B.F. <i>Siderophores and Iron Metabolism - Structures, Functions, Role in Infection and Potential as a Novel Class of Antibiotics.
<h3> Microbiot, probiotic, safety </h3>
<h3> Microbiot, probiotic, safety </h3>
-
<li>Arribas, B., Rodríguez-Cabezas, M., Camuesco, D., Comalada, M., Bailón, E., Utrilla, P., Nieto, A., Concha, A., Zarzuelo, A., and Gálvez, J. (2009). <big>A probiotic strain of Escherichia coli , Nissle 1917, given orally exerts local and systemic anti-inflammatory effects in lipopolysaccharide-induced sepsis in mice. British Journal of Pharmacology 157, 1024–1033.
+
<li>Arribas, B., Rodríguez-Cabezas, M., Camuesco, D., Comalada, M., Bailón, E., Utrilla, P., Nieto, A., Concha, A., Zarzuelo, A., and Gálvez, J. (2009). <i>A probiotic strain of Escherichia coli , Nissle 1917, given orally exerts local and systemic anti-inflammatory effects in lipopolysaccharide-induced sepsis in mice. British Journal of Pharmacology 157, 1024–1033.
-
<br><li>Bermúdez-Humarán, L.G., Aubry, C., Motta, J.-P., Deraison, C., Steidler, L., Vergnolle, N., Chatel, J.-M., and Langella, P. (2013). <big>Engineering lactococci and lactobacilli for human health. Current Opinion in Microbiology 16, 278–283.
+
<br><li>Bermúdez-Humarán, L.G., Aubry, C., Motta, J.-P., Deraison, C., Steidler, L., Vergnolle, N., Chatel, J.-M., and Langella, P. (2013). <i>Engineering lactococci and lactobacilli for human health. Current Opinion in Microbiology 16, 278–283.
-
<br><li>Deriu, E., Liu, J.Z., Pezeshki, M., Edwards, R.A., Ochoa, R.J., Contreras, H., Libby, S.J., Fang, F.C., and Raffatellu, M. (2013). <big>Probiotic Bacteria Reduce Salmonella Typhimurium Intestinal Colonization by Competing for Iron. Cell Host & Microbe 14, 26–37.
+
<br><li>Deriu, E., Liu, J.Z., Pezeshki, M., Edwards, R.A., Ochoa, R.J., Contreras, H., Libby, S.J., Fang, F.C., and Raffatellu, M. (2013). <i>Probiotic Bacteria Reduce Salmonella Typhimurium Intestinal Colonization by Competing for Iron. Cell Host & Microbe 14, 26–37.
-
<br><li>Hancock, V., Dahl, M., and Klemm, P. (2010). <big>Probiotic Escherichia coli strain Nissle 1917 outcompetes intestinal pathogens during biofilm formation. Journal of Medical Microbiology 59, 392–399.
+
<br><li>Hancock, V., Dahl, M., and Klemm, P. (2010). <i>Probiotic Escherichia coli strain Nissle 1917 outcompetes intestinal pathogens during biofilm formation. Journal of Medical Microbiology 59, 392–399.
-
<br><li>Saarela, M., Mogensen, G., Fondén, R., Mättö, J., and Mattila-Sandholm, T. (2000). <big>Probiotic bacteria: safety, functional and technological properties. Journal of Biotechnology 84, 197–215.
+
<br><li>Saarela, M., Mogensen, G., Fondén, R., Mättö, J., and Mattila-Sandholm, T. (2000). <i>Probiotic bacteria: safety, functional and technological properties. Journal of Biotechnology 84, 197–215.
-
<br><li>Skaar, E.P. (2010). <big>The Battle for Iron between Bacterial Pathogens and Their Vertebrate Hosts. PLoS Pathogens 6, e1000949.
+
<br><li>Skaar, E.P. (2010). <i>The Battle for Iron between Bacterial Pathogens and Their Vertebrate Hosts. PLoS Pathogens 6, e1000949.
-
<br><li>Snydman, D.R. (2008). <big>The Safety of Probiotics. Clinical Infectious Diseases 46, S104–S111.
+
<br><li>Snydman, D.R. (2008). <i>The Safety of Probiotics. Clinical Infectious Diseases 46, S104–S111.
Line 94: Line 94:
<p>
<p>
-
<li>Louden, B.C., Haarmann, D., and Lynne, A. (2011). <big>Use of Blue Agar CAS Assay for Siderophore Detection. Journal of Microbiology & Biology Education 12,.</p>
+
<li>Louden, B.C., Haarmann, D., and Lynne, A. (2011). <i>Use of Blue Agar CAS Assay for Siderophore Detection. Journal of Microbiology & Biology Education 12,.</p>
Line 100: Line 100:
<p>
<p>
-
<li> B. Hari, S. Bakalis, P. Fryer (2012). <big>Computational Modeling and Simulation of the Human Duodenum</p>
+
<li> B. Hari, S. Bakalis, P. Fryer (2012). <i>Computational Modeling and Simulation of the Human Duodenum</p>
Line 109: Line 109:
<p>
<p>
-
<li> G. Simondon (1958). <big>Du mode d'existence des objets techniques (<i>On the Mode of Existence of Technical Objects</i>)</p>
+
<li> G. Simondon (1958). <i>Du mode d'existence des objets techniques (<i>On the Mode of Existence of Technical Objects</i>)</p>
</div>
</div>

Revision as of 10:33, 30 August 2013

Iron coli project

References

Biology

Ajouter (free article + lien si dispo)

Iron metabolism and iron associated diseases in humans

  • Ganz, T., and Nemeth, E. (2011). Hepcidin and Disorders of Iron Metabolism. Annual Review of Medicine 62, 347–360.
  • Hentze, M.W., Muckenthaler, M.U., Galy, B., and Camaschella, C. (2010). Two to Tango: Regulation of Mammalian Iron Metabolism. Cell 142, 24–38.
  • Nicolas, G. (2004). Hepcidin, a candidate modifier of the hemochromatosis phenotype in mice. Blood 103, 2841–2843.
  • Nicolas, G., Bennoun, M., Devaux, I., Beaumont, C., Grandchamp, B., Kahn, A., and Vaulont, S. (2001). From the Cover: Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proceedings of the National Academy of Sciences 98, 8780–8785.
  • Pantopoulos, K., Porwal, S.K., Tartakoff, A., and Devireddy, L. (2012). Mechanisms of Mammalian Iron Homeostasis. Biochemistry 51, 5705–5724.
  • Viatte, L. (2006). Chronic hepcidin induction causes hyposideremia and alters the pattern of cellular iron accumulation in hemochromatotic mice. Blood 107, 2952–2958.

    FUR, siderophores and iron metabolism in bacteria

  • Ahmad, R., Brandsdal, B.O., Michaud-Soret, I., and Willassen, N.-P. (2009). Ferric uptake regulator protein: Binding free energy calculations and per-residue free energy decomposition. Proteins: Structure, Function, and Bioinformatics 75, 373–386.
  • Andrews, S.C., Robinson, A.K., and Rodríguez-Quiñones, F. (2003). Bacterial iron homeostasis. FEMS Microbiol. Rev. 27, 215–237. br>
  • Escolar, L. , Pérez-Martín, J., and De Lorenzo, V. (1991). Opening the Iron Box: Transcriptional Metalloregulation by the Fur Protein. Journal of Bacteriology 181,20.
  • Guerinot, M.L. (1994). Microbial iron transport. Annu. Rev. Microbiol. 48, 743–772.
  • Oglesby-Sherrouse, A.G., and Murphy, E.R. (2013). Iron-responsive bacterial small RNAs: variations on a theme. Metallomics 5, 276.
  • Pecqueur, L. (2006). Structural Changes of Escherichia coli Ferric Uptake Regulator during Metal-dependent Dimerization and Activation Explored by NMR and X-ray Crystallography. Journal of Biological Chemistry 281, 21286–21295.
  • Schilling, C.H., Held, L., Torre, M., and Saier, M.H., Jr (2000). GRASP-DNA: a web application to screen prokaryotic genomes for specific DNA-binding sites and repeat motifs. J. Mol. Microbiol. Biotechnol. 2, 495–500.
  • Tiss, A., Barre, O., Michaud-Soret, I., and Forest, E. (2005). Characterization of the DNA-binding site in the ferric uptake regulator protein from Escherichia coli by UV crosslinking and mass spectrometry. FEBS Letters 579, 5454–5460.
  • Tsolis, R., Baumler, A.J., Stojiljkovic, I., and Heffron, F. (1995). Fur regulon of Salmonella typhimurium: identification of new iron-regulated genes. Journal of Bacteriology 177, 4628–4637.
  • Valdebenito, M., Crumbliss, A.L., Winkelmann, G., and Hantke, K. (2006). Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917. International Journal of Medical Microbiology 296, 513–520.
  • Visca, P., Leoni, L., Wilson, M.J., and Lamont, I.L. (2002). Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol. Microbiol. 45, 1177–1190.
  • Zhang, Z., Gosset, G., Barabote, R., Gonzalez, C.S., Cuevas, W.A., and Saier, M.H. (2005). Functional Interactions between the Carbon and Iron Utilization Regulators, Crp and Fur, in Escherichia coli. Journal of Bacteriology 187, 980–990.

    Siderophors

  • Hider, R.C. Siderophore mediated absorption of iron. In Siderophores from Microorganisms and Plants, (Berlin, Heidelberg: Springer Berlin Heidelberg), pp. 25–87.
  • Matzanke, B.F. Siderophores and Iron Metabolism - Structures, Functions, Role in Infection and Potential as a Novel Class of Antibiotics.

    Microbiot, probiotic, safety

  • Arribas, B., Rodríguez-Cabezas, M., Camuesco, D., Comalada, M., Bailón, E., Utrilla, P., Nieto, A., Concha, A., Zarzuelo, A., and Gálvez, J. (2009). A probiotic strain of Escherichia coli , Nissle 1917, given orally exerts local and systemic anti-inflammatory effects in lipopolysaccharide-induced sepsis in mice. British Journal of Pharmacology 157, 1024–1033.
  • Bermúdez-Humarán, L.G., Aubry, C., Motta, J.-P., Deraison, C., Steidler, L., Vergnolle, N., Chatel, J.-M., and Langella, P. (2013). Engineering lactococci and lactobacilli for human health. Current Opinion in Microbiology 16, 278–283.
  • Deriu, E., Liu, J.Z., Pezeshki, M., Edwards, R.A., Ochoa, R.J., Contreras, H., Libby, S.J., Fang, F.C., and Raffatellu, M. (2013). Probiotic Bacteria Reduce Salmonella Typhimurium Intestinal Colonization by Competing for Iron. Cell Host & Microbe 14, 26–37.
  • Hancock, V., Dahl, M., and Klemm, P. (2010). Probiotic Escherichia coli strain Nissle 1917 outcompetes intestinal pathogens during biofilm formation. Journal of Medical Microbiology 59, 392–399.
  • Saarela, M., Mogensen, G., Fondén, R., Mättö, J., and Mattila-Sandholm, T. (2000). Probiotic bacteria: safety, functional and technological properties. Journal of Biotechnology 84, 197–215.
  • Skaar, E.P. (2010). The Battle for Iron between Bacterial Pathogens and Their Vertebrate Hosts. PLoS Pathogens 6, e1000949.
  • Snydman, D.R. (2008). The Safety of Probiotics. Clinical Infectious Diseases 46, S104–S111.

    Protocols

  • Louden, B.C., Haarmann, D., and Lynne, A. (2011). Use of Blue Agar CAS Assay for Siderophore Detection. Journal of Microbiology & Biology Education 12,.

    Modeling

  • B. Hari, S. Bakalis, P. Fryer (2012). Computational Modeling and Simulation of the Human Duodenum

    Philosophy

  • G. Simondon (1958). Du mode d'existence des objets techniques (On the Mode of Existence of Technical Objects)