Apostolovic, B., & Klok, H.-A. (2008). pH-sensitivity of the E3/K3 heterodimeric coiled coil. Biomacromolecules, 9(11), 3173–80. doi:10.1021/bm800746e
Arthur, T.M., Keen, J.E., Bosilevac, J.M, Brichta-Harhay, D.M., Kalchayanand, N., Shackelford, S.D., … Koohmaraie, M. (2009). Longitudinal study of Escherichia coli O157:H7 in a beef cattle feedlot and role of high-level shedders in hide contamination. Applied and Environmental Microbiology, 75(20), 6515-23. doi: 10.1128/AEM.00081-09
Beurdeley, M., Bietz, F., Li, J., Thomas, S., Stoddard, T., Juillerat, A., … Silva, G. H. (2013). Compact designer TALENs for efficient genome engineering. Nature Communications, 4, 1762. doi:10.1038/ncomms2782
Besant, J.D., Das, J., Sargent, E.H., Kelley, SO. (2013) Proximal bacterial lysis and detection in nanoliter wells using electrochemistry. American Chemical Society Nano, 7(9), 8183-9.
Blais, B.W., Gauthier, M., Descheênes, M., & Huszczynski G. (2012). Polyester cloth-based hybridization array system for identification of enterohemorrhagic Escherichia coli serogroups O26, O45, O103, O111, O121, O145, and O157. Journal of Food Protection, 75(9), 1691-7. doi: 10.4315/0362-028X.JFP-12-116
Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., … Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science (New York, N.Y.), 326(5959), 1509–12. doi:10.1126/science.1178811
Bogdanove, A. J., Schornack, S., & Lahaye, T. (2010). TAL effectors: finding plant genes for disease and defense. Current Opinion in Plant Biology, 13(4), 394–401. doi:10.1016/j.pbi.2010.04.010
Bogdanove, A. J., & Voytas, D. F. (2011). TAL effectors: customizable proteins for DNA targeting. Science (New York, N.Y.), 3336051), 1843–6. doi:10.1126/science.1204094
Bushart, S., Bradbury, D., Elder, G., Duffield, J., Pascual, I., & Ratcliffe, N. (2006). The development of magnetic molecules for the selective removal of contaminants. In Waste Management Conference. Tuczon, AZ. Retrieved from http://www.wmsym.org/archives/2006/pdfs/6190.pdf
Carvalho, R. H., Lemos, F., Lemos, M. A., Vojinović, V., Fonseca, L. P., & Cabral, J. M. S. (2006). Kinetic modelling of phenol co-oxidation using horseradish peroxidase. Bioprocess and Biosystems Engineering, 29(2), 99–108. doi:10.1007/s00449-006-0057-0
Cermak, T., Doyle, E.L., Christian, M., Wang, L., Zhang, Y.,Schmidt, C., … Voytas, D.F. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research, 39(12), e82.
Chase-Topping, M., Gally, D., Low, C., Matthews, L., Woolhouse, M. (2008). Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157. Nature Reviews Microbiology, 6(12):904-12. doi: 10.1038/nrmicro2029
Cong, L., Zhou, R., Kuo, Y., Cunniff, M., & Zhang, F. (2013). Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nature Communications. doi:10.1038/ncomms1962.Comprehensive
Cornish-Bowden, A. (2012). Fundamentals of Enzyme Kinetics (4th ed.). Weinheim, Germany: Wiley-Blackwell.
De Lange, O., Schreiber, T., Schandry, N., Radeck, J., Braun, K. H., Koszinowski, J., … Lahaye, T. (2013). Breaking the DNA-binding code of Ralstonia solanacearum TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease. The New Phytologist, 199(3), 773–86. doi:10.1111/nph.12324
Dörner, M. H., Salfeld, J., Will, H., Leibold, E. A., Vass, J. K., & Munro, H. N. (1985). Structure of human ferritin light subunit messenger RNA: comparison with heavy subunit message and functional implications. Proceedings of the National Academy of Sciences of the United States of America, 82(10), 3139–43. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=397730&tool=pmcentrez&rendertype=abstract
Engler, C., Kandzia, R., & Marillonnet, S. (2008). A one pot, one step, precision cloning method with high throughput capability. PLoS ONE, 3(11), e3647. doi: 10.1371/journal.pone.0003647
Ford, A. G. C., Harrison, P. M., Rice, D. W., Smith, J. M. A., Treffry, A., White, J. L., & Yariv, J. (1984). Ferritin : design and formation of an iron-storage molecule source . Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 304(1121), 551-65. Retrieved from http://www.jstor.org/stable/2396121
Fortin, N.Y., Mulchandani, A., & Chen, W. (2001). Use of real-time polymerase chain reaction and molecular beacons for the detection of Escherichia coli O157:H7. Analytical Biochemistry , 289(2), 281-8.
Gibson, D.G., Young, L., Chuang, R.Y., Venter, J.C., Hutchison, C.A. 3rd, Smith, H.O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6(5), 343-5. doi: 10.1038/nmeth.1318
Gill, A., Martinez-Perez, A., McIIwham, S., & Blais, B. (2012). Development of a method for the detection of verotoxin-producing Escherichia coli in food. Journal of Food Protection, 75(5), 827-837.
Harrison, P.-M., & Arosio, P. (1996). The ferritins: molecular properties, iron storage function and cellular regulation. Biochimica et Biophysica Acta, 1275(3), 161-203. doi:10.1016/0005-2728(96)00022-9
He, Y., Zhang, S., Zhang, X., Baloda, M., Gurung, A. S., Xu, H., … Liu, G. (2011). Ultrasensitive nucleic acid biosensor based on enzyme-gold nanoparticle dual label and lateral flow strip biosensor. Biosensors & Bioelectronics, 26(5), 2018–24. doi:10.1016/j.bios.2010.08.079
Huang, Z. (1991). Kinetic fluorescence measurement of fluorescein di-.beta.-D-galactoside hydrolysis by .beta.-galactosidase: intermediate channeling in stepwise catalysis by a free single enzyme. Biochemistry, 30(35), 8535–8540. doi:10.1021/bi00099a006
Huh, Y. S., & Kim, I. H. (2003). Purification of fusion ferritin from recombinant E. coli using two-step sonications. Biotechnology Letters, 25(12), 993–6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12889837
Ingrassia, R., Gerardi, G., Biasiotto, G., & Arosio, P. (2006). Mutations of ferritin H chain C-terminus produced by nucleotide insertions have altered stability and functional properties. Journal of Biochemistry, 139(5), 881–5. doi:10.1093/jb/mvj101
Jordan, V. C., Caplan, M. R., & Bennett, K. M. (2010). Simplified synthesis and relaxometry of magnetoferritin for magnetic resonance imaging. Magnetic Resonance in Medicine : Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, 64(5), 1260–6. doi:10.1002/mrm.22526
Kim, S.-E., Ahn, K.-Y., Park, J.-S., Kim, K. R., Lee, K. E., Han, S.-S., & Lee, J. (2011). Fluorescent ferritin nanoparticles and application to the aptamer sensor. Analytical Chemistry, 83(15), 5834–43. doi:10.1021/ac200657s
Kong, Y., Yao, H., Ren, H., Subbian, S., Cirillo, S. L. G., Sacchettini, J. C., … Cirillo, J. D. (2010). Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice. Proceedings of the National Academy of Sciences of the United States of America, 107(27), 12239–44. doi:10.1073/pnas.1000643107
Lawson, D. M., Artymiuk, P. J., Yewdall, S. J., Smith, J. M., Livingstone, J. C., Treffry, A., Luzzago, A., Levi, S., Arosio, P., Cesareni, G. (1991). Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature, 349(6309), 541–4. doi:10.1038/349541a0
Lee, J., Kim, S. W., Kim, Y. H., & Ahn, J. Y. (2002). Active human ferritin H/L-hybrid and sequence effect on folding efficiency in Escherichia coli. Biochemical and Biophysical Research Communications, 298(2), 225–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12387819
Levi, S., Corsi, B., Rovida, E., Cozzi, A., Santambrogio, P., Albertini, A., & Arosio, P. (1994). Construction of a ferroxidase center in human ferritin L-chain. The Journal of Biological Chemistry, 269(48), 30334–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7982945
Li, D., Yang, M., Hu, J., Zhang, Y., Chang, H., & Jin, F. (2008). Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river. Water Research, 42(1-2), 307–17. doi:10.1016/j.watres.2007.07.016
Litowski, J. R., & Hodges, R. S. (2002). Designing heterodimeric two-stranded alpha-helical coiled-coils. Effects of hydrophobicity and alpha-helical propensity on protein folding, stability, and specificity. The Journal of Biological Chemistry, 277(40), 37272–9. doi:10.1074/jbc.M204257200
Lohsse, A., Ullrich, S., Katzmann, E., Borg, S., Wanner, G., Richter, M., … Schüler, D. (2011). Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense: the mamAB operon is sufficient for magnetite biomineralization. PloS ONE, 6(10), e25561. doi:10.1371/journal.pone.0025561
Luzzago, A., & Cesareni, G. (1989). Isolation of point mutations that affect the folding of the H chain of human ferritin in E.coli. The EMBO Journal, 8(2), 569–76. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=400843&tool=pmcentrez&rendertype=abstract
Mercer, A.C., Gaj, T. Fuller, R.P., & Barbas, C.F. 3rd (2012). Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Research, 40(21), 11163-72. doi: 10.1093/nar/gks875
Meckler, J.F., Bhakta, M.S., Kim, M.S., Ovadia, R., Habrian, C.H., Zykovich, A., ... Baldwin, E.P. (2013). Quantitative analysis of TALE-DNA interactions suggests polarity effects. Nucleic Acids Research, 41(7), 4118–28. doi:10.1093/nar/gkt085
Metelkin, E. A., Lebedeva, G. V., Goryanin, I. I., & Demin, O. V. (2009). A kinetic model of Escherichia coli β-galactosidase. Biophysics, 54(2), 156–162. doi:10.1134/S0006350909020067
Miller, J.C., Tan, S., Qiao, G., Barlow, K.A., Wang, J., Xia, D.F., … Rebar, E.J. (2011). A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 29(2), 143-148.
Moore, J. T., Davis, S. T., & Dev, I. K. (1997). The development of beta-lactamase as a highly versatile genetic reporter for eukaryotic cells. Analytical Biochemistry, 247(2), 203–9. doi:10.1006/abio.1997.2092
Mussolino, C., & Cathomen, T. (2012). TALE nucleases: tailored genome engineering made easy. Current Opinion in Biotechnology, 23(5), 644–50. doi:10.1016/j.copbio.2012.01.013
Nakajima, Y., & Ohmiya, Y. (2010). Bioluminescence assays: multicolor luciferase assay, secreted luciferase assay and imaging luciferase assay. Expert Opinion on Drug Discovery, 5(9), 835–849. doi:10.1517/17460441.2010.506213
Pfleger, K. D. G., & Eidne, K. A. (2006). Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nature Methods, 3(3), 165–174. doi:10.1038/nmeth841
Piston, D. W., & Kremers, G.-J. (2007). Fluorescent protein FRET: the good, the bad and the ugly. Trends in Biochemical Sciences, 32(9), 407–414. doi:10.1016/j.tibs.2007.08.003
Qureshi, S. (2007). β-Lactamase: an ideal reporter system for monitoring gene expression in live eukaryotic cells. BioTechniques, 42(1), 91–96. doi:10.2144/000112292
Remy, I., Ghaddar, G., & Michnick, S. W. (2007). Using the beta-lactamase protein-fragment complementation assay to probe dynamic protein-protein interactions. Nature Protocols, 2(9), 2302–6. doi:10.1038/nprot.2007.356
Santambrogio, P., Levi, S., Cozzi, A., Rovida, E., Albertini, A., & Arosio, P. (1993). Production and characterization of recombinant heteropolymers of human ferritin H and L chains. The Journal of Biological Chemistry, 268(17), 12744–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8509409
Streubel, J., Blücher, C., Landgraf, A., & Boch, J. (2012). TAL effector RVD specificities and efficiencies. Nature Biotechnology, 30(7), 593–5. doi:10.1038/nbt.2304
Watt, G. D., Kim, J.-W., Zhang, B., Miller, T., Harb, J. N., Davis, R. C., & Choi, S. H. (2012). A protein-based ferritin bio-nanobattery. Journal of Nanotechnology, 2012, 1–9. doi:10.1155/2012/516309
Wehrman, T., Kleaveland, B., Her, J.-H., Balint, R. F., & Blau, H. M. (2002). Protein-protein interactions monitored in mammalian cells via complementation of beta -lactamase enzyme fragments. Proceedings of the National Academy of Sciences of the United States of America, 99(6), 3469–74. doi:10.1073/pnas.062043699
Wong, K. K. W., Douglas, T., Gider, S., Awschalom, D. D., & Mann, S. (1998). Biomimetic synthesis and characterization of magnetic proteins (magnetoferritin). Chemistry of Materials, 10(1), 279–285. doi:10.1021/cm970421o
Zhang, X.-Q., Gong, S.-W., Zhang, Y., Yang, T., Wang, C.-Y., & Gu, N. (2010). Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. Journal of Materials Chemistry, 20(24), 5110. doi:10.1039/c0jm00174k
Zhang, W., Zhang, Y., Chen, Y., Li, S., Gu, N., Hu, S., Sun, Y., Chen, X., & Li, Q. (2013). Prussian blue modified ferritin as peroxidase mimetics and its applications in biological detection, Journal of Nanoscience and Nanotechnology, 12, 1–8. doi:10.1166/jnn.2012.6871