Team:Calgary/Notebook/References

From 2013.igem.org

Revision as of 22:52, 27 September 2013 by Kate (Talk | contribs)

References

  • Apostolovic, B., & Klok, H.-A. (2008). pH-sensitivity of the E3/K3 heterodimeric coiled coil. Biomacromolecules, 9(11), 3173–80. doi:10.1021/bm800746e
  • Beurdeley, M., Bietz, F., Li, J., Thomas, S., Stoddard, T., Juillerat, A., … Silva, G. H. (2013). Compact designer TALENs for efficient genome engineering. Nature communications, 4, 1762. doi:10.1038/ncomms2782
  • Besant, J.D., Das, J., Sargent, E.H., Kelley, SO. (2013) Proximal bacterial lysis and detection in nanoliter wells using electrochemistry. American Chemical Society Nano, 7(9), 8183-9.
  • Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., … Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science (New York, N.Y.), 326(5959), 1509–12. doi:10.1126/science.1178811
  • Bogdanove, A. J., Schornack, S., & Lahaye, T. (2010). TAL effectors: finding plant genes for disease and defense. Current opinion in plant biology, 13(4), 394–401. doi:10.1016/j.pbi.2010.04.010
  • Bogdanove, A. J., & Voytas, D. F. (2011). TAL effectors: customizable proteins for DNA targeting. Science (New York, N.Y.), 3336051), 1843–6. doi:10.1126/science.1204094
  • Bushart, S., Bradbury, D., Elder, G., Duffield, J., Pascual, I., & Ratcliffe, N. (2006). The Development of Magnetic Molecules for the Selective Removal of Contaminents. In Waste Management Conference. Tuczon, AZ. Retrieved from http://www.wmsym.org/archives/2006/pdfs/6190.pdf
  • Cong, L., Zhou, R., Kuo, Y., Cunniff, M., & Zhang, F. (2013). Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nature communications. doi:10.1038/ncomms1962.Comprehensive
  • De Lange, O., Schreiber, T., Schandry, N., Radeck, J., Braun, K. H., Koszinowski, J., … Lahaye, T. (2013). Breaking the DNA-binding code of Ralstonia solanacearum TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease. The New phytologist, 199(3), 773–86. doi:10.1111/nph.12324
  • Dörner, M. H., Salfeld, J., Will, H., Leibold, E. A., Vass, J. K., & Munro, H. N. (1985). Structure of human ferritin light subunit messenger RNA: comparison with heavy subunit message and functional implications. Proceedings of the National Academy of Sciences of the United States of America, 82(10), 3139–43. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=397730&tool=pmcentrez&rendertype=abstract
  • Ford, A. G. C., Harrison, P. M., Rice, D. W., Smith, J. M. A., Treffry, A., White, J. L., & Yariv, J. (1984). Ferritin : Design and Formation of an Iron-Storage Molecule Source : Philosophical Transactions of the Royal Society of London . Series B , Biological Sciences , Vol . 304 , No . 1121 , Mineral Phases in Biology ( Feb . 13 , 1984 ), pp . 551-565 Published by : The Royal Society Stable URL : http://www.jstor.org/stable/2396121 . IRON OXIDES ,, 304(1121), 551–565.
  • Harrison, P.-M., & Arosio, P. (1996). The ferritins: molecular properties, iron storage function and cellular regulation. Biochimica et Biophysica Acta, 1275(3), 161-203. doi:10.1016/0005-2728(96)00022-9
  • He, Y., Zhang, S., Zhang, X., Baloda, M., Gurung, A. S., Xu, H., … Liu, G. (2011). Ultrasensitive nucleic acid biosensor based on enzyme-gold nanoparticle dual label and lateral flow strip biosensor. Biosensors & bioelectronics, 26(5), 2018–24. doi:10.1016/j.bios.2010.08.079
  • Ingrassia, R., Gerardi, G., Biasiotto, G., & Arosio, P. (2006). Mutations of ferritin H chain C-terminus produced by nucleotide insertions have altered stability and functional properties. Journal of biochemistry, 139(5), 881–5. doi:10.1093/jb/mvj101
  • Huh, Y. S., & Kim, I. H. (2003). Purification of fusion ferritin from recombinant E. coli using two-step sonications. Biotechnology letters, 25(12), 993–6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12889837
  • Jordan, V. C., Caplan, M. R., & Bennett, K. M. (2010). Simplified synthesis and relaxometry of magnetoferritin for magnetic resonance imaging. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, 64(5), 1260–6. doi:10.1002/mrm.22526
  • Kim, S.-E., Ahn, K.-Y., Park, J.-S., Kim, K. R., Lee, K. E., Han, S.-S., & Lee, J. (2011). Fluorescent ferritin nanoparticles and application to the aptamer sensor. Analytical chemistry, 83(15), 5834–43. doi:10.1021/ac200657s
  • Kong, Y., Yao, H., Ren, H., Subbian, S., Cirillo, S. L. G., Sacchettini, J. C., … Cirillo, J. D. (2010). Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice. Proceedings of the National Academy of Sciences of the United States of America, 107(27), 12239–44. doi:10.1073/pnas.1000643107
  • Lawson, D. M., Artymiuk, P. J., Yewdall, S. J., Smith, J. M., Livingstone, J. C., Treffry, A., Luzzago, A., Levi, S., Arosio, P., Cesareni, G. (1991). Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature, 349(6309), 541–4. doi:10.1038/349541a0
  • Lee, J., Kim, S. W., Kim, Y. H., & Ahn, J. Y. (2002). Active human ferritin H/L-hybrid and sequence effect on folding efficiency in Escherichia coli. Biochemical and biophysical research communications, 298(2), 225–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12387819
  • Levi, S., Corsi, B., Rovida, E., Cozzi, A., Santambrogio, P., Albertini, A., & Arosio, P. (1994). Construction of a ferroxidase center in human ferritin L-chain. The Journal of biological chemistry, 269(48), 30334–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7982945
  • Li, D., Yang, M., Hu, J., Zhang, Y., Chang, H., & Jin, F. (2008). Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river. Water research, 42(1-2), 307–17. doi:10.1016/j.watres.2007.07.016
  • Litowski, J. R., & Hodges, R. S. (2002). Designing heterodimeric two-stranded alpha-helical coiled-coils. Effects of hydrophobicity and alpha-helical propensity on protein folding, stability, and specificity. The Journal of biological chemistry, 277(40), 37272–9. doi:10.1074/jbc.M204257200
  • Lohsse, A., Ullrich, S., Katzmann, E., Borg, S., Wanner, G., Richter, M., … Schüler, D. (2011). Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense: the mamAB operon is sufficient for magnetite biomineralization. PloS one, 6(10), e25561. doi:10.1371/journal.pone.0025561
  • Luzzago, A., & Cesareni, G. (1989). Isolation of point mutations that affect the folding of the H chain of human ferritin in E.coli. The EMBO journal, 8(2), 569–76. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=400843&tool=pmcentrez&rendertype=abstract
  • Moore, J. T., Davis, S. T., & Dev, I. K. (1997). The development of beta-lactamase as a highly versatile genetic reporter for eukaryotic cells. Analytical biochemistry, 247(2), 203–9. doi:10.1006/abio.1997.2092
  • Mussolino, C., & Cathomen, T. (2012). TALE nucleases: tailored genome engineering made easy. Current opinion in biotechnology, 23(5), 644–50. doi:10.1016/j.copbio.2012.01.013
  • Qureshi, S. (2007). β-Lactamase: an ideal reporter system for monitoring gene expression in live eukaryotic cells. BioTechniques, 42(1), 91–96. doi:10.2144/000112292
  • Remy, I., Ghaddar, G., & Michnick, S. W. (2007). Using the beta-lactamase protein-fragment complementation assay to probe dynamic protein-protein interactions. Nature protocols, 2(9), 2302–6. doi:10.1038/nprot.2007.356
  • Santambrogio, P., Levi, S., Cozzi, A., Rovida, E., Albertini, A., & Arosio, P. (1993). Production and characterization of recombinant heteropolymers of human ferritin H and L chains. The Journal of biological chemistry, 268(17), 12744–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8509409
  • Streubel, J., Blücher, C., Landgraf, A., & Boch, J. (2012). TAL effector RVD specificities and efficiencies. Nature biotechnology, 30(7), 593–5. doi:10.1038/nbt.2304
  • Watt, G. D., Kim, J.-W., Zhang, B., Miller, T., Harb, J. N., Davis, R. C., & Choi, S. H. (2012). A Protein-Based Ferritin Bio-Nanobattery. Journal of Nanotechnology, 2012, 1–9. doi:10.1155/2012/516309
  • Wehrman, T., Kleaveland, B., Her, J.-H., Balint, R. F., & Blau, H. M. (2002). Protein-protein interactions monitored in mammalian cells via complementation of beta -lactamase enzyme fragments. Proceedings of the National Academy of Sciences of the United States of America, 99(6), 3469–74. doi:10.1073/pnas.062043699
  • Wong, K. K. W., Douglas, T., Gider, S., Awschalom, D. D., & Mann, S. (1998). Biomimetic Synthesis and Characterization of Magnetic Proteins (Magnetoferritin). Chemistry of Materials, 10(1), 279–285. doi:10.1021/cm970421o
  • Zhang, X.-Q., Gong, S.-W., Zhang, Y., Yang, T., Wang, C.-Y., & Gu, N. (2010). Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. Journal of Materials Chemistry, 20(24), 5110. doi:10.1039/c0jm00174k
  • Zhang, W., Zhang, Y., Chen, Y., Li, S., Gu, N., Hu, S., Sun, Y., Chen, X., & Li, Q. (2013). Prussian Blue Modified Ferritin as Peroxidase Mimetics and Its Applications in Biological Detection, Journal of nanoscience and nanotechnology, 12, 1–8. doi:10.1166/jnn.2012.6871