Team:Calgary/Sandbox/Project/References

From 2013.igem.org

References

Apostolovic, B., & Klok, H.-A. (2008). pH-sensitivity of the E3/K3 heterodimeric coiled coil. Biomacromolecules, 9(11), 3173–80. doi:10.1021/bm800746e

Beurdeley, M., Bietz, F., Li, J., Thomas, S., Stoddard, T., Juillerat, A., … Silva, G. H. (2013). Compact designer TALENs for efficient genome engineering. Nature communications, 4, 1762. doi:10.1038/ncomms2782

Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., … Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science (New York, N.Y.), 326(5959), 1509–12. doi:10.1126/science.1178811

Bogdanove, A. J., Schornack, S., & Lahaye, T. (2010). TAL effectors: finding plant genes for disease and defense. Current opinion in plant biology, 13(4), 394–401. doi:10.1016/j.pbi.2010.04.010

Bogdanove, A. J., & Voytas, D. F. (2011). TAL effectors: customizable proteins for DNA targeting. Science (New York, N.Y.), 3336051), 1843–6. doi:10.1126/science.1204094

Cong, L., Zhou, R., Kuo, Y., Cunniff, M., & Zhang, F. (2013). Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nature communications. doi:10.1038/ncomms1962.Comprehensive

De Lange, O., Schreiber, T., Schandry, N., Radeck, J., Braun, K. H., Koszinowski, J., … Lahaye, T. (2013). Breaking the DNA-binding code of Ralstonia solanacearum TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease. The New phytologist, 199(3), 773–86. doi:10.1111/nph.12324

Ford, A. G. C., Harrison, P. M., Rice, D. W., Smith, J. M. A., Treffry, A., White, J. L., & Yariv, J. (2013). Ferritin : Design and Formation of an Iron-Storage Molecule Source : Philosophical Transactions of the Royal Society of London . Series B , Biological Sciences , Vol . 304 , No . 1121 , Mineral Phases in Biology ( Feb . 13 , 1984 ), pp . 551-565 Published by : The Royal Society Stable URL : http://www.jstor.org/stable/2396121 . IRON OXIDES ,, 304(1121), 551–565.

Harrison, P.-M., & Arosio, P. (1996). The ferritins: molecular properties, iron storage function and cellular regulation. Biochimica et Biophysica Acta, 1275(3), 161-203. doi:10.1016/0005-2728(96)00022-9

Kim, S.-E., Ahn, K.-Y., Park, J.-S., Kim, K. R., Lee, K. E., Han, S.-S., & Lee, J. (2011). Fluorescent ferritin nanoparticles and application to the aptamer sensor. Analytical chemistry, 83(15), 5834–43. doi:10.1021/ac200657s

Litowski, J. R., & Hodges, R. S. (2002). Designing heterodimeric two-stranded alpha-helical coiled-coils. Effects of hydrophobicity and alpha-helical propensity on protein folding, stability, and specificity. The Journal of biological chemistry, 277(40), 37272–9. doi:10.1074/jbc.M204257200

Lawson, D. M., Artymiuk, P. J., Yewdall, S. J., Smith, J. M., Livingstone, J. C., Treffry, A., Luzzago, A., Levi, S., Arosio, P., Cesareni, G. (1991). Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature, 349(6309), 541–4. doi:10.1038/349541a0

Mussolino, C., & Cathomen, T. (2012). TALE nucleases: tailored genome engineering made easy. Current opinion in biotechnology, 23(5), 644–50. doi:10.1016/j.copbio.2012.01.013

Streubel, J., Blücher, C., Landgraf, A., & Boch, J. (2012). TAL effector RVD specificities and efficiencies. Nature biotechnology, 30(7), 593–5. doi:10.1038/nbt.2304

Zhang, X.-Q., Gong, S.-W., Zhang, Y., Yang, T., Wang, C.-Y., & Gu, N. (2010). Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. Journal of Materials Chemistry, 20(24), 5110. doi:10.1039/c0jm00174k

Zhang, W., Zhang, Y., Chen, Y., Li, S., Gu, N., Hu, S., Sun, Y., Chen, X., & Li, Q. (2012). Prussian Blue Modified Ferritin as Peroxidase Mimetics and Its Applications in Biological Detection, Journal of nanoscience and nanotechnology, 12, 1–8. doi:10.1166/jnn.2012.6871