Team:ETH Zurich/Notebook
From 2013.igem.org
Line 69: | Line 69: | ||
<br> | <br> | ||
<b>Week 7 : </b> | <b>Week 7 : </b> | ||
- | LAB WORK, MANY UPDATES ON THE WIKI, MODELLING, WORKING ON HUMAN PRACTICES.<br> Great pictures for the AHL diffusion on single layer agar with GFP receiver cells; Pcons-LuxI (strong promoter) was transformed. The supernatant of the Pcons-LuxI overnight culture induces GFP in the receiver cell (proof of principle for AHL quorum sensing of sender and receiver cells);linear titration of the AHL concentration.PCR of the hydrolases for the biobricks. | + | <p>LAB WORK, MANY UPDATES ON THE WIKI, MODELLING, WORKING ON HUMAN PRACTICES.<br> Great pictures for the AHL diffusion on single layer agar with GFP receiver cells; Pcons-LuxI (strong promoter) was transformed. The supernatant of the Pcons-LuxI overnight culture induces GFP in the receiver cell (proof of principle for AHL quorum sensing of sender and receiver cells);linear titration of the AHL concentration.PCR of the hydrolases for the biobricks.</p> |
Revision as of 12:24, 20 August 2013
Kick off event 19.06.13
Brainstorming 19.06.13 - 3.07.13
Coming up with different ideas for our iGEM project, considering the advantages and disadvantages and the final impact. In the end, we decided on something innovative and fun!
Start Work 4.07.13
Week 1:
PLANNING AND LAB WORK.
Planning of responsibilities and establishment of roles of all team members; starting the wiki; gathering more information on the project by doing research in literature; designing a logo for our product, coming up with a catchy slogan, and deciding on a name for the final project; designing initial experiments and learning many necessary lab techniques (some of the first lab tasks included making buffers, media, chemical competent cells, choosing biobricks for our cells, and doing transformations of the first chosen bricks.
Week 2 :
CONTINUATION OF LAB WORK AND BEGINNING OF MODELING.
Transforming all the biobricks and cloning to build our chosen pathways; after research in literature, deciding on 4 hydrolases : NagZ, PhoA, GusA and Aes as well as respective substrates to color them.
We encountered some difficulties during transformation of triple knockout cells with the hydrolases, so this step will have to be repeated in the following weeks with a different strain of bacteria.
Week 3 - 4 :
MORE LAB WORK AND MODELING.
Transforming and cloning; designing primers for the mutation of LuxR promoter to alter sensitvity; starting AHL diffusion experiments for characterization of the AHL diffusion.
The receiver cells with GFP are done and work well on plates and liquid culture.
Week 5 - 6 :
LAB WORK, MODELING, UPDATING WIKI.
Working on AHL diffusion, particularly its efficacy; transforming a new strain of E.coli with the T7 polymerase to test the substrates; working on transforming the triple knockout cells; retransforming the LuxI construct because the first transformation din't have an RBS.
Week 7 :
LAB WORK, MANY UPDATES ON THE WIKI, MODELLING, WORKING ON HUMAN PRACTICES.
Great pictures for the AHL diffusion on single layer agar with GFP receiver cells; Pcons-LuxI (strong promoter) was transformed. The supernatant of the Pcons-LuxI overnight culture induces GFP in the receiver cell (proof of principle for AHL quorum sensing of sender and receiver cells);linear titration of the AHL concentration.PCR of the hydrolases for the biobricks.