Team:Colombia Uniandes/Scripting

From 2013.igem.org

(Difference between revisions)
(Deterministic model)
Line 28: Line 28:
===Equations===
===Equations===
 +
 +
function y = EcuacionesGluco(t,x)
 +
global gammaGR mGRIR mCC deltaGRI alfaR deltaR deltaCC betaCC k n deltaS H
 +
 +
%---------Parameters------%
 +
 +
 +
GRO=funcImpulso(t);
 +
 +
%------ Variables%------%
 +
 +
GRI= x(1); %Glucocorticoid inside the cell
 +
R=x(2); %Receptor in the cytoplasm
 +
CC=x(3); %Receptor -Glucocorticoid complex
 +
V=x(4); %Violacein
 +
 +
 +
%---Equations---%
 +
dGRI=gammaGR*(GRO-GRI)-mGRIR*GRI*R+mCC*CC-deltaGRI*GRI;
 +
dR=alfaR-mGRIR*GRI*R+mCC*CC-deltaR*R;
 +
dCC=mGRIR*GRI*R-mCC*CC-deltaCC*CC-(betaCC*CC.^n)/(k^n+CC.^n);%Revisar
 +
dV=H*(betaCC*CC^n)/(k^n+CC^n)-deltaS*V;
 +
 +
y1(1)=dGRI;
 +
y1(2)=dR;
 +
y1(3)=dCC;
 +
y1(4)=dV;
 +
 +
 +
y= y1';
 +
 +
end
===Equation solver===
===Equation solver===
 +
 +
 +
global gammaGR mGRIR mCC deltaGRI alfaR deltaR deltaCC betaCC k n deltaS H
 +
 +
 +
gammaGR= 0.1;    %Diffussion rate of glucocorticoid inside the cell (mm/min)
 +
mGRIR=1.080e-3;        % GRI-R complex formation kinetic constant (1/umol min)
 +
mCC=1.14*10^-8;    %GRI-R Complex formation reverse  kinetic constant (1/min)
 +
deltaGRI=0.00833;  %Glucocorticoids Destruction rate inside the cell (1/min)
 +
alfaR= 0.8e3;          %Basal production rate of the receptor (umol/min)
 +
deltaR=0.004166;          %Receptor destruction rate inside the cell (1/min)
 +
deltaCC=0.004166;  % GRI-R complex Destruction rate (1/min)
 +
betaCC=0.5e3;    % GRI-R complex maximum expression rate (umol/min)
 +
k=0.05e3;          %Hill's constant for the GRI-R complex dimmer binding to his respective region (umol)
 +
n=2;              %Hill coefficient (cooperation constant)
 +
deltaS=0.04166;  %Signal destruction rate (1/min)
 +
H=2;              %Correction constant for the signal
 +
 +
 +
 +
h=60; %Tiempo maximo
 +
 +
m=0.01; %Longitud de paso [s]
 +
 +
t=0:m:h; %Vector tiempo
 +
 +
xi=[0 0 0 0];
 +
 +
y=fsolve(@CondIndGluco,xi,optimset('algorithm','levenberg-marquardt','maxiter',100000,'tolfun',1e-9));
 +
 +
conInd=y;
 +
assignin('base','conInd',conInd);
 +
l=(0:m:h)'; %Vector de tiempo
 +
 +
x=zeros(length(l),length(conInd)); %Matriz de variables, en las columnas varia
 +
%la variable y en las filas varia el tiempo
 +
 +
GRO=zeros(1,length(l));
 +
 +
x(1,:)=conInd;
 +
 +
for u=1:length(l)-1
 +
   
 +
    xk=x(u,:); %Captura de la ultima posicion de la matirz, es decir, los
 +
    %valores actuales de las variables
 +
   
 +
    k1=EcuacionesGluco(l(u),xk); %Primera pendiente del metodo de RK4
 +
    k2=EcuacionesGluco(l(u)+m/2,xk+(m/2*k1)'); %Segunda pendiente del metodo de RK4
 +
    k3=EcuacionesGluco(l(u)+m/2,xk+(m/2*k2)'); %Tercera pendiente del metodo de RK4
 +
    k4=EcuacionesGluco(l(u)+m,xk+(m*k3)'); %Cuarta pendiente del metodo de RK4
 +
   
 +
    xk1=xk+m/6*(k1+2*k2+2*k3+k4)'; %Calculo de nuevos valores para las
 +
    %variables
 +
   
 +
     
 +
    xk2=zeros(1,length(xk1));
 +
   
 +
   
 +
    for p=1:length(xk1)
 +
       
 +
        if(xk1(p)<0.00000001)
 +
           
 +
            xk2(p)=0;
 +
        else
 +
           
 +
            xk2(p)=xk1(p);
 +
        end
 +
       
 +
    end
 +
   
 +
   
 +
    x(u+1,:)=xk2; %Actualizacion del nuevo vector de variables en la matriz
 +
   
 +
   
 +
   
 +
   
 +
   
 +
end
 +
 +
for j=1:length(l)
 +
   
 +
    if (l(j)<(10) || l(j)>(30))
 +
       
 +
        GRO(j)=155;
 +
       
 +
    else
 +
       
 +
        GRO(j)=155*1.3;
 +
       
 +
       
 +
    end
 +
   
 +
   
 +
end
 +
 +
GRI=x(:,1);
 +
R=x(:,2);
 +
CC=x(:,3);
 +
V=x(:,4);
 +
 +
 +
figure(1)
 +
plot(l,R)%,l,GRO)%,l,CC,l,V)
 +
legend('Receptor')%,'Glucocorticoid') %, 'Complex', 'Signal')
 +
xlabel('Time')
 +
ylabel('Concetration (micromolar)')
 +
title('Glucocorticoid model')
 +
 +
figure(2)
 +
plot(l,CC)%,l,GRO)
 +
legend('Complejo')%,'Glucocorticoid')
 +
 +
figure(3)
 +
plot(l,V)%,l,GRO)
 +
legend('Senal')%,'Glucocorticoid')
 +
 +
figure(4)
 +
plot(l,GRI)%,l,GRO)
 +
legend('GRI')%,'Glucocorticoid')
==Stochastic==
==Stochastic==

Revision as of 22:00, 25 September 2013


Scripting

Contents

Glucocorticoid Detection System


Deterministic model

Equations

function y = EcuacionesGluco(t,x) global gammaGR mGRIR mCC deltaGRI alfaR deltaR deltaCC betaCC k n deltaS H

%---------Parameters------%


GRO=funcImpulso(t);

%------ Variables%------%

GRI= x(1); %Glucocorticoid inside the cell R=x(2); %Receptor in the cytoplasm CC=x(3); %Receptor -Glucocorticoid complex V=x(4); %Violacein


%---Equations---% dGRI=gammaGR*(GRO-GRI)-mGRIR*GRI*R+mCC*CC-deltaGRI*GRI; dR=alfaR-mGRIR*GRI*R+mCC*CC-deltaR*R; dCC=mGRIR*GRI*R-mCC*CC-deltaCC*CC-(betaCC*CC.^n)/(k^n+CC.^n);%Revisar dV=H*(betaCC*CC^n)/(k^n+CC^n)-deltaS*V;

y1(1)=dGRI; y1(2)=dR; y1(3)=dCC; y1(4)=dV;


y= y1';

end

Equation solver

global gammaGR mGRIR mCC deltaGRI alfaR deltaR deltaCC betaCC k n deltaS H


gammaGR= 0.1;  %Diffussion rate of glucocorticoid inside the cell (mm/min) mGRIR=1.080e-3;  % GRI-R complex formation kinetic constant (1/umol min) mCC=1.14*10^-8;  %GRI-R Complex formation reverse kinetic constant (1/min) deltaGRI=0.00833;  %Glucocorticoids Destruction rate inside the cell (1/min) alfaR= 0.8e3;  %Basal production rate of the receptor (umol/min) deltaR=0.004166;  %Receptor destruction rate inside the cell (1/min) deltaCC=0.004166;  % GRI-R complex Destruction rate (1/min) betaCC=0.5e3;  % GRI-R complex maximum expression rate (umol/min) k=0.05e3;  %Hill's constant for the GRI-R complex dimmer binding to his respective region (umol) n=2;  %Hill coefficient (cooperation constant) deltaS=0.04166;  %Signal destruction rate (1/min) H=2;  %Correction constant for the signal


h=60; %Tiempo maximo

m=0.01; %Longitud de paso [s]

t=0:m:h; %Vector tiempo

xi=[0 0 0 0];

y=fsolve(@CondIndGluco,xi,optimset('algorithm','levenberg-marquardt','maxiter',100000,'tolfun',1e-9));

conInd=y; assignin('base','conInd',conInd); l=(0:m:h)'; %Vector de tiempo

x=zeros(length(l),length(conInd)); %Matriz de variables, en las columnas varia %la variable y en las filas varia el tiempo

GRO=zeros(1,length(l));

x(1,:)=conInd;

for u=1:length(l)-1

   xk=x(u,:); %Captura de la ultima posicion de la matirz, es decir, los
   %valores actuales de las variables
   
   k1=EcuacionesGluco(l(u),xk); %Primera pendiente del metodo de RK4
   k2=EcuacionesGluco(l(u)+m/2,xk+(m/2*k1)'); %Segunda pendiente del metodo de RK4
   k3=EcuacionesGluco(l(u)+m/2,xk+(m/2*k2)'); %Tercera pendiente del metodo de RK4
   k4=EcuacionesGluco(l(u)+m,xk+(m*k3)'); %Cuarta pendiente del metodo de RK4
   
   xk1=xk+m/6*(k1+2*k2+2*k3+k4)'; %Calculo de nuevos valores para las
   %variables
   
      
   xk2=zeros(1,length(xk1));
   
   
   for p=1:length(xk1)
       
       if(xk1(p)<0.00000001)
           
           xk2(p)=0;
       else
           
           xk2(p)=xk1(p);
       end
       
   end
   
   
   x(u+1,:)=xk2; %Actualizacion del nuevo vector de variables en la matriz
   
   
   
   
   

end

for j=1:length(l)

   if (l(j)<(10) || l(j)>(30))
       
       GRO(j)=155;
       
   else
       
       GRO(j)=155*1.3;
       
       
   end
   
   

end

GRI=x(:,1); R=x(:,2); CC=x(:,3); V=x(:,4);


figure(1) plot(l,R)%,l,GRO)%,l,CC,l,V) legend('Receptor')%,'Glucocorticoid') %, 'Complex', 'Signal') xlabel('Time') ylabel('Concetration (micromolar)') title('Glucocorticoid model')

figure(2) plot(l,CC)%,l,GRO) legend('Complejo')%,'Glucocorticoid')

figure(3) plot(l,V)%,l,GRO) legend('Senal')%,'Glucocorticoid')

figure(4) plot(l,GRI)%,l,GRO) legend('GRI')%,'Glucocorticoid')

Stochastic

Nickel removal system


Deterministic model

Equations

Equation solver

Stochastic