Team:Colombia Uniandes/Scripting
From 2013.igem.org
(→Deterministic model) |
|||
Line 28: | Line 28: | ||
===Equations=== | ===Equations=== | ||
+ | |||
+ | function y = EcuacionesGluco(t,x) | ||
+ | global gammaGR mGRIR mCC deltaGRI alfaR deltaR deltaCC betaCC k n deltaS H | ||
+ | |||
+ | %---------Parameters------% | ||
+ | |||
+ | |||
+ | GRO=funcImpulso(t); | ||
+ | |||
+ | %------ Variables%------% | ||
+ | |||
+ | GRI= x(1); %Glucocorticoid inside the cell | ||
+ | R=x(2); %Receptor in the cytoplasm | ||
+ | CC=x(3); %Receptor -Glucocorticoid complex | ||
+ | V=x(4); %Violacein | ||
+ | |||
+ | |||
+ | %---Equations---% | ||
+ | dGRI=gammaGR*(GRO-GRI)-mGRIR*GRI*R+mCC*CC-deltaGRI*GRI; | ||
+ | dR=alfaR-mGRIR*GRI*R+mCC*CC-deltaR*R; | ||
+ | dCC=mGRIR*GRI*R-mCC*CC-deltaCC*CC-(betaCC*CC.^n)/(k^n+CC.^n);%Revisar | ||
+ | dV=H*(betaCC*CC^n)/(k^n+CC^n)-deltaS*V; | ||
+ | |||
+ | y1(1)=dGRI; | ||
+ | y1(2)=dR; | ||
+ | y1(3)=dCC; | ||
+ | y1(4)=dV; | ||
+ | |||
+ | |||
+ | y= y1'; | ||
+ | |||
+ | end | ||
===Equation solver=== | ===Equation solver=== | ||
+ | |||
+ | |||
+ | global gammaGR mGRIR mCC deltaGRI alfaR deltaR deltaCC betaCC k n deltaS H | ||
+ | |||
+ | |||
+ | gammaGR= 0.1; %Diffussion rate of glucocorticoid inside the cell (mm/min) | ||
+ | mGRIR=1.080e-3; % GRI-R complex formation kinetic constant (1/umol min) | ||
+ | mCC=1.14*10^-8; %GRI-R Complex formation reverse kinetic constant (1/min) | ||
+ | deltaGRI=0.00833; %Glucocorticoids Destruction rate inside the cell (1/min) | ||
+ | alfaR= 0.8e3; %Basal production rate of the receptor (umol/min) | ||
+ | deltaR=0.004166; %Receptor destruction rate inside the cell (1/min) | ||
+ | deltaCC=0.004166; % GRI-R complex Destruction rate (1/min) | ||
+ | betaCC=0.5e3; % GRI-R complex maximum expression rate (umol/min) | ||
+ | k=0.05e3; %Hill's constant for the GRI-R complex dimmer binding to his respective region (umol) | ||
+ | n=2; %Hill coefficient (cooperation constant) | ||
+ | deltaS=0.04166; %Signal destruction rate (1/min) | ||
+ | H=2; %Correction constant for the signal | ||
+ | |||
+ | |||
+ | |||
+ | h=60; %Tiempo maximo | ||
+ | |||
+ | m=0.01; %Longitud de paso [s] | ||
+ | |||
+ | t=0:m:h; %Vector tiempo | ||
+ | |||
+ | xi=[0 0 0 0]; | ||
+ | |||
+ | y=fsolve(@CondIndGluco,xi,optimset('algorithm','levenberg-marquardt','maxiter',100000,'tolfun',1e-9)); | ||
+ | |||
+ | conInd=y; | ||
+ | assignin('base','conInd',conInd); | ||
+ | l=(0:m:h)'; %Vector de tiempo | ||
+ | |||
+ | x=zeros(length(l),length(conInd)); %Matriz de variables, en las columnas varia | ||
+ | %la variable y en las filas varia el tiempo | ||
+ | |||
+ | GRO=zeros(1,length(l)); | ||
+ | |||
+ | x(1,:)=conInd; | ||
+ | |||
+ | for u=1:length(l)-1 | ||
+ | |||
+ | xk=x(u,:); %Captura de la ultima posicion de la matirz, es decir, los | ||
+ | %valores actuales de las variables | ||
+ | |||
+ | k1=EcuacionesGluco(l(u),xk); %Primera pendiente del metodo de RK4 | ||
+ | k2=EcuacionesGluco(l(u)+m/2,xk+(m/2*k1)'); %Segunda pendiente del metodo de RK4 | ||
+ | k3=EcuacionesGluco(l(u)+m/2,xk+(m/2*k2)'); %Tercera pendiente del metodo de RK4 | ||
+ | k4=EcuacionesGluco(l(u)+m,xk+(m*k3)'); %Cuarta pendiente del metodo de RK4 | ||
+ | |||
+ | xk1=xk+m/6*(k1+2*k2+2*k3+k4)'; %Calculo de nuevos valores para las | ||
+ | %variables | ||
+ | |||
+ | |||
+ | xk2=zeros(1,length(xk1)); | ||
+ | |||
+ | |||
+ | for p=1:length(xk1) | ||
+ | |||
+ | if(xk1(p)<0.00000001) | ||
+ | |||
+ | xk2(p)=0; | ||
+ | else | ||
+ | |||
+ | xk2(p)=xk1(p); | ||
+ | end | ||
+ | |||
+ | end | ||
+ | |||
+ | |||
+ | x(u+1,:)=xk2; %Actualizacion del nuevo vector de variables en la matriz | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | end | ||
+ | |||
+ | for j=1:length(l) | ||
+ | |||
+ | if (l(j)<(10) || l(j)>(30)) | ||
+ | |||
+ | GRO(j)=155; | ||
+ | |||
+ | else | ||
+ | |||
+ | GRO(j)=155*1.3; | ||
+ | |||
+ | |||
+ | end | ||
+ | |||
+ | |||
+ | end | ||
+ | |||
+ | GRI=x(:,1); | ||
+ | R=x(:,2); | ||
+ | CC=x(:,3); | ||
+ | V=x(:,4); | ||
+ | |||
+ | |||
+ | figure(1) | ||
+ | plot(l,R)%,l,GRO)%,l,CC,l,V) | ||
+ | legend('Receptor')%,'Glucocorticoid') %, 'Complex', 'Signal') | ||
+ | xlabel('Time') | ||
+ | ylabel('Concetration (micromolar)') | ||
+ | title('Glucocorticoid model') | ||
+ | |||
+ | figure(2) | ||
+ | plot(l,CC)%,l,GRO) | ||
+ | legend('Complejo')%,'Glucocorticoid') | ||
+ | |||
+ | figure(3) | ||
+ | plot(l,V)%,l,GRO) | ||
+ | legend('Senal')%,'Glucocorticoid') | ||
+ | |||
+ | figure(4) | ||
+ | plot(l,GRI)%,l,GRO) | ||
+ | legend('GRI')%,'Glucocorticoid') | ||
==Stochastic== | ==Stochastic== |
Revision as of 22:00, 25 September 2013
Scripting
Contents |
Glucocorticoid Detection System
Deterministic model
Equations
function y = EcuacionesGluco(t,x) global gammaGR mGRIR mCC deltaGRI alfaR deltaR deltaCC betaCC k n deltaS H
%---------Parameters------%
GRO=funcImpulso(t);
%------ Variables%------%
GRI= x(1); %Glucocorticoid inside the cell R=x(2); %Receptor in the cytoplasm CC=x(3); %Receptor -Glucocorticoid complex V=x(4); %Violacein
%---Equations---%
dGRI=gammaGR*(GRO-GRI)-mGRIR*GRI*R+mCC*CC-deltaGRI*GRI;
dR=alfaR-mGRIR*GRI*R+mCC*CC-deltaR*R;
dCC=mGRIR*GRI*R-mCC*CC-deltaCC*CC-(betaCC*CC.^n)/(k^n+CC.^n);%Revisar
dV=H*(betaCC*CC^n)/(k^n+CC^n)-deltaS*V;
y1(1)=dGRI; y1(2)=dR; y1(3)=dCC; y1(4)=dV;
y= y1';
end
Equation solver
global gammaGR mGRIR mCC deltaGRI alfaR deltaR deltaCC betaCC k n deltaS H
gammaGR= 0.1; %Diffussion rate of glucocorticoid inside the cell (mm/min)
mGRIR=1.080e-3; % GRI-R complex formation kinetic constant (1/umol min)
mCC=1.14*10^-8; %GRI-R Complex formation reverse kinetic constant (1/min)
deltaGRI=0.00833; %Glucocorticoids Destruction rate inside the cell (1/min)
alfaR= 0.8e3; %Basal production rate of the receptor (umol/min)
deltaR=0.004166; %Receptor destruction rate inside the cell (1/min)
deltaCC=0.004166; % GRI-R complex Destruction rate (1/min)
betaCC=0.5e3; % GRI-R complex maximum expression rate (umol/min)
k=0.05e3; %Hill's constant for the GRI-R complex dimmer binding to his respective region (umol)
n=2; %Hill coefficient (cooperation constant)
deltaS=0.04166; %Signal destruction rate (1/min)
H=2; %Correction constant for the signal
h=60; %Tiempo maximo
m=0.01; %Longitud de paso [s]
t=0:m:h; %Vector tiempo
xi=[0 0 0 0];
y=fsolve(@CondIndGluco,xi,optimset('algorithm','levenberg-marquardt','maxiter',100000,'tolfun',1e-9));
conInd=y; assignin('base','conInd',conInd); l=(0:m:h)'; %Vector de tiempo
x=zeros(length(l),length(conInd)); %Matriz de variables, en las columnas varia %la variable y en las filas varia el tiempo
GRO=zeros(1,length(l));
x(1,:)=conInd;
for u=1:length(l)-1
xk=x(u,:); %Captura de la ultima posicion de la matirz, es decir, los %valores actuales de las variables k1=EcuacionesGluco(l(u),xk); %Primera pendiente del metodo de RK4 k2=EcuacionesGluco(l(u)+m/2,xk+(m/2*k1)'); %Segunda pendiente del metodo de RK4 k3=EcuacionesGluco(l(u)+m/2,xk+(m/2*k2)'); %Tercera pendiente del metodo de RK4 k4=EcuacionesGluco(l(u)+m,xk+(m*k3)'); %Cuarta pendiente del metodo de RK4 xk1=xk+m/6*(k1+2*k2+2*k3+k4)'; %Calculo de nuevos valores para las %variables xk2=zeros(1,length(xk1)); for p=1:length(xk1) if(xk1(p)<0.00000001) xk2(p)=0; else xk2(p)=xk1(p); end end x(u+1,:)=xk2; %Actualizacion del nuevo vector de variables en la matriz
end
for j=1:length(l)
if (l(j)<(10) || l(j)>(30)) GRO(j)=155; else GRO(j)=155*1.3; end
end
GRI=x(:,1); R=x(:,2); CC=x(:,3); V=x(:,4);
figure(1)
plot(l,R)%,l,GRO)%,l,CC,l,V)
legend('Receptor')%,'Glucocorticoid') %, 'Complex', 'Signal')
xlabel('Time')
ylabel('Concetration (micromolar)')
title('Glucocorticoid model')
figure(2) plot(l,CC)%,l,GRO) legend('Complejo')%,'Glucocorticoid')
figure(3) plot(l,V)%,l,GRO) legend('Senal')%,'Glucocorticoid')
figure(4) plot(l,GRI)%,l,GRO) legend('GRI')%,'Glucocorticoid')
Stochastic
Nickel removal system