Team:Colombia Uniandes/Scripting
From 2013.igem.org
(Difference between revisions)
(→Equations) |
|||
Line 29: | Line 29: | ||
===Equations=== | ===Equations=== | ||
- | function y = EcuacionesGluco(t,x) | + | function y = EcuacionesGluco(t,x) |
- | global gammaGR mGRIR mCC deltaGRI alfaR deltaR deltaCC betaCC k n deltaS H | + | global gammaGR mGRIR mCC deltaGRI alfaR deltaR deltaCC betaCC k n deltaS H |
- | + | % | |
- | %---------Parameters------% | + | %---------Parameters------% |
- | + | % | |
- | + | % | |
- | GRO=funcImpulso(t); | + | GRO=funcImpulso(t); |
- | + | % | |
- | %------ Variables%------% | + | %------ Variables%------% |
- | + | % | |
- | GRI= x(1); %Glucocorticoid inside the cell | + | GRI= x(1); %Glucocorticoid inside the cell |
- | R=x(2); %Receptor in the cytoplasm | + | R=x(2); %Receptor in the cytoplasm |
- | CC=x(3); %Receptor -Glucocorticoid complex | + | CC=x(3); %Receptor -Glucocorticoid complex |
- | V=x(4); %Violacein | + | V=x(4); %Violacein |
- | + | % | |
- | + | % | |
- | %---Equations---% | + | %---Equations---% |
- | dGRI=gammaGR*(GRO-GRI)-mGRIR*GRI*R+mCC*CC-deltaGRI*GRI; | + | dGRI=gammaGR*(GRO-GRI)-mGRIR*GRI*R+mCC*CC-deltaGRI*GRI; |
- | dR=alfaR-mGRIR*GRI*R+mCC*CC-deltaR*R; | + | dR=alfaR-mGRIR*GRI*R+mCC*CC-deltaR*R; |
- | dCC=mGRIR*GRI*R-mCC*CC-deltaCC*CC-(betaCC*CC.^n)/(k^n+CC.^n);%Revisar | + | dCC=mGRIR*GRI*R-mCC*CC-deltaCC*CC-(betaCC*CC.^n)/(k^n+CC.^n);%Revisar |
- | dV=H*(betaCC*CC^n)/(k^n+CC^n)-deltaS*V; | + | dV=H*(betaCC*CC^n)/(k^n+CC^n)-deltaS*V; |
- | + | % | |
- | y1(1)=dGRI; | + | y1(1)=dGRI; |
- | y1(2)=dR; | + | y1(2)=dR; |
- | y1(3)=dCC; | + | y1(3)=dCC; |
- | y1(4)=dV; | + | y1(4)=dV; |
- | + | % | |
- | + | % | |
- | y= y1'; | + | y= y1'; |
- | + | % | |
- | end | + | end |
===Equation solver=== | ===Equation solver=== |
Revision as of 22:06, 25 September 2013
Scripting
Contents |
Glucocorticoid Detection System
Deterministic model
Equations
function y = EcuacionesGluco(t,x) global gammaGR mGRIR mCC deltaGRI alfaR deltaR deltaCC betaCC k n deltaS H % %---------Parameters------% % % GRO=funcImpulso(t); % %------ Variables%------% % GRI= x(1); %Glucocorticoid inside the cell R=x(2); %Receptor in the cytoplasm CC=x(3); %Receptor -Glucocorticoid complex V=x(4); %Violacein % % %---Equations---% dGRI=gammaGR*(GRO-GRI)-mGRIR*GRI*R+mCC*CC-deltaGRI*GRI; dR=alfaR-mGRIR*GRI*R+mCC*CC-deltaR*R; dCC=mGRIR*GRI*R-mCC*CC-deltaCC*CC-(betaCC*CC.^n)/(k^n+CC.^n);%Revisar dV=H*(betaCC*CC^n)/(k^n+CC^n)-deltaS*V; % y1(1)=dGRI; y1(2)=dR; y1(3)=dCC; y1(4)=dV; % % y= y1'; % end
Equation solver
%global gammaGR mGRIR mCC deltaGRI alfaR deltaR deltaCC betaCC k n deltaS H % % gammaGR= 0.1; %Diffussion rate of glucocorticoid inside the cell (mm/min) % mGRIR=1.080e-3; % GRI-R complex formation kinetic constant (1/umol min) % mCC=1.14*10^-8; %GRI-R Complex formation reverse kinetic constant (1/min) % deltaGRI=0.00833; %Glucocorticoids Destruction rate inside the cell (1/min) % alfaR= 0.8e3; %Basal production rate of the receptor (umol/min) % deltaR=0.004166; %Receptor destruction rate inside the cell (1/min) deltaCC=0.004166; % GRI-R complex Destruction rate (1/min) betaCC=0.5e3; % GRI-R complex maximum expression rate (umol/min) k=0.05e3; %Hill's constant for the GRI-R complex dimmer binding to his respective region (umol) n=2; %Hill coefficient (cooperation constant) deltaS=0.04166; %Signal destruction rate (1/min) H=2; %Correction constant for the signal % % % h=60; %Tiempo maximo % m=0.01; %Longitud de paso [s] % t=0:m:h; %Vector tiempo % xi=[0 0 0 0]; % y=fsolve(@CondIndGluco,xi,optimset('algorithm','levenberg-marquardt','maxiter',100000,'tolfun',1e-9)); % conInd=y;
assignin('base','conInd',conInd); l=(0:m:h)'; %Vector de tiempo
x=zeros(length(l),length(conInd)); %Matriz de variables, en las columnas varia %la variable y en las filas varia el tiempo
GRO=zeros(1,length(l));
x(1,:)=conInd;
for u=1:length(l)-1
xk=x(u,:); %Captura de la ultima posicion de la matirz, es decir, los %valores actuales de las variables k1=EcuacionesGluco(l(u),xk); %Primera pendiente del metodo de RK4 k2=EcuacionesGluco(l(u)+m/2,xk+(m/2*k1)'); %Segunda pendiente del metodo de RK4 k3=EcuacionesGluco(l(u)+m/2,xk+(m/2*k2)'); %Tercera pendiente del metodo de RK4 k4=EcuacionesGluco(l(u)+m,xk+(m*k3)'); %Cuarta pendiente del metodo de RK4 xk1=xk+m/6*(k1+2*k2+2*k3+k4)'; %Calculo de nuevos valores para las %variables xk2=zeros(1,length(xk1)); for p=1:length(xk1) if(xk1(p)<0.00000001) xk2(p)=0; else xk2(p)=xk1(p); end end x(u+1,:)=xk2; %Actualizacion del nuevo vector de variables en la matriz
end
for j=1:length(l)
if (l(j)<(10) || l(j)>(30)) GRO(j)=155; else GRO(j)=155*1.3; end
end
GRI=x(:,1); R=x(:,2); CC=x(:,3); V=x(:,4);
figure(1)
plot(l,R)%,l,GRO)%,l,CC,l,V)
legend('Receptor')%,'Glucocorticoid') %, 'Complex', 'Signal')
xlabel('Time')
ylabel('Concetration (micromolar)')
title('Glucocorticoid model')
figure(2) plot(l,CC)%,l,GRO) legend('Complejo')%,'Glucocorticoid')
figure(3) plot(l,V)%,l,GRO) legend('Senal')%,'Glucocorticoid')
figure(4) plot(l,GRI)%,l,GRO) legend('GRI')%,'Glucocorticoid')
Stochastic
Nickel removal system