Team:Colombia Uniandes/Scripting
From 2013.igem.org
(Difference between revisions)
(→Equations) |
(→Equation solver) |
||
Line 68: | Line 68: | ||
% | % | ||
% | % | ||
- | gammaGR= 0.1; | + | gammaGR= 0.1; %Diffussion rate of glucocorticoid inside the cell (mm/min) |
- | + | mGRIR=1.080e-3; % GRI-R complex formation kinetic constant (1/umol min) | |
- | mGRIR=1.080e-3; | + | |
- | + | ||
mCC=1.14*10^-8; %GRI-R Complex formation reverse kinetic constant (1/min) | mCC=1.14*10^-8; %GRI-R Complex formation reverse kinetic constant (1/min) | ||
- | |||
deltaGRI=0.00833; %Glucocorticoids Destruction rate inside the cell (1/min) | deltaGRI=0.00833; %Glucocorticoids Destruction rate inside the cell (1/min) | ||
- | + | alfaR= 0.8e3; %Basal production rate of the receptor (umol/min) | |
- | alfaR= 0.8e3; | + | deltaR=0.004166; %Receptor destruction rate inside the cell (1/min) |
- | + | ||
- | deltaR=0.004166; | + | |
deltaCC=0.004166; % GRI-R complex Destruction rate (1/min) | deltaCC=0.004166; % GRI-R complex Destruction rate (1/min) | ||
- | betaCC=0.5e3; | + | betaCC=0.5e3; % GRI-R complex maximum expression rate (umol/min) |
k=0.05e3; %Hill's constant for the GRI-R complex dimmer binding to his respective region (umol) | k=0.05e3; %Hill's constant for the GRI-R complex dimmer binding to his respective region (umol) | ||
n=2; %Hill coefficient (cooperation constant) | n=2; %Hill coefficient (cooperation constant) | ||
- | deltaS=0.04166; | + | deltaS=0.04166; %Signal destruction rate (1/min) |
H=2; %Correction constant for the signal | H=2; %Correction constant for the signal | ||
% | % | ||
% | % | ||
% | % | ||
- | h=60; % | + | h=60; %maximum time |
- | + | m=0.01; %step length [s] | |
- | m=0.01; % | + | t=0:m:h; %time vector |
- | + | ||
- | t=0:m:h; % | + | |
% | % | ||
xi=[0 0 0 0]; | xi=[0 0 0 0]; | ||
Line 111: | Line 104: | ||
for u=1:length(l)-1 | for u=1:length(l)-1 | ||
% | % | ||
- | xk=x(u,:); % | + | xk=x(u,:); %Takes the last position of the matrix (i.e. the actual values of the variables) |
- | + | ||
% | % | ||
- | + | % k1=EcuacionesGluco(l(u),xk); %first slope of the RK4 method | |
- | + | % k2=EcuacionesGluco(l(u)+m/2,xk+(m/2*k1)'); %second slope of the RK4 method | |
- | + | % k3=EcuacionesGluco(l(u)+m/2,xk+(m/2*k2)'); %third slope of the RK4 method | |
- | + | % k4=EcuacionesGluco(l(u)+m,xk+(m*k3)'); %ffourth slope of the RK4 method | |
% | % | ||
- | + | % xk1=xk+m/6*(k1+2*k2+2*k3+k4)'; %new vectors for the variables | |
- | + | ||
% | % | ||
% | % | ||
- | + | % xk2=zeros(1,length(xk1)); | |
% | % | ||
% | % | ||
- | + | % for p=1:length(xk1) | |
% | % | ||
- | + | % if(xk1(p)<0.00000001) | |
% | % | ||
- | + | % xk2(p)=0; | |
- | + | % else | |
% | % | ||
- | + | % xk2(p)=xk1(p); | |
- | + | % end | |
% | % | ||
- | + | % end | |
% | % | ||
% | % | ||
- | + | % x(u+1,:)=xk2; %Actualization of the new vector of variables int the martrix | |
% | % | ||
% | % | ||
Line 149: | Line 140: | ||
for j=1:length(l) | for j=1:length(l) | ||
% | % | ||
- | + | % if (l(j)<(10) || l(j)>(30)) | |
% | % | ||
- | + | % GRO(j)=155; | |
% | % | ||
- | + | % else | |
% | % | ||
- | + | % GRO(j)=155*1.3; | |
% | % | ||
% | % | ||
- | + | % end | |
% | % | ||
% | % |
Revision as of 02:57, 26 September 2013
Scripting
Contents |
Glucocorticoid Detection System
Deterministic model
Equations
function y = EcuacionesGluco(t,x) global gammaGR mGRIR mCC deltaGRI alfaR deltaR deltaCC betaCC k n deltaS H % %---------Parameters------% % % GRO=funcImpulso(t); % %------ Variables%------% % GRI= x(1); %Glucocorticoid inside the cell R=x(2); %Receptor in the cytoplasm CC=x(3); %Receptor -Glucocorticoid complex V=x(4); %Violacein % % %---Equations---% dGRI=gammaGR*(GRO-GRI)-mGRIR*GRI*R+mCC*CC-deltaGRI*GRI; dR=alfaR-mGRIR*GRI*R+mCC*CC-deltaR*R; dCC=mGRIR*GRI*R-mCC*CC-deltaCC*CC-(betaCC*CC.^n)/(k^n+CC.^n);%Revisar dV=H*(betaCC*CC^n)/(k^n+CC^n)-deltaS*V; % y1(1)=dGRI; y1(2)=dR; y1(3)=dCC; y1(4)=dV; % % y= y1'; % end
Equation solver
%global gammaGR mGRIR mCC deltaGRI alfaR deltaR deltaCC betaCC k n deltaS H % % gammaGR= 0.1; %Diffussion rate of glucocorticoid inside the cell (mm/min) mGRIR=1.080e-3; % GRI-R complex formation kinetic constant (1/umol min) mCC=1.14*10^-8; %GRI-R Complex formation reverse kinetic constant (1/min) deltaGRI=0.00833; %Glucocorticoids Destruction rate inside the cell (1/min) alfaR= 0.8e3; %Basal production rate of the receptor (umol/min) deltaR=0.004166; %Receptor destruction rate inside the cell (1/min) deltaCC=0.004166; % GRI-R complex Destruction rate (1/min) betaCC=0.5e3; % GRI-R complex maximum expression rate (umol/min) k=0.05e3; %Hill's constant for the GRI-R complex dimmer binding to his respective region (umol) n=2; %Hill coefficient (cooperation constant) deltaS=0.04166; %Signal destruction rate (1/min) H=2; %Correction constant for the signal % % % h=60; %maximum time m=0.01; %step length [s] t=0:m:h; %time vector % xi=[0 0 0 0]; % y=fsolve(@CondIndGluco,xi,optimset('algorithm','levenberg-marquardt','maxiter',100000,'tolfun',1e-9)); % conInd=y; assignin('base','conInd',conInd); l=(0:m:h)'; %Vector de tiempo % x=zeros(length(l),length(conInd)); %Matriz de variables, en las columnas varia %la variable y en las filas varia el tiempo % GRO=zeros(1,length(l)); % x(1,:)=conInd; % for u=1:length(l)-1 % xk=x(u,:); %Takes the last position of the matrix (i.e. the actual values of the variables) % % k1=EcuacionesGluco(l(u),xk); %first slope of the RK4 method % k2=EcuacionesGluco(l(u)+m/2,xk+(m/2*k1)'); %second slope of the RK4 method % k3=EcuacionesGluco(l(u)+m/2,xk+(m/2*k2)'); %third slope of the RK4 method % k4=EcuacionesGluco(l(u)+m,xk+(m*k3)'); %ffourth slope of the RK4 method % % xk1=xk+m/6*(k1+2*k2+2*k3+k4)'; %new vectors for the variables % % % xk2=zeros(1,length(xk1)); % % % for p=1:length(xk1) % % if(xk1(p)<0.00000001) % % xk2(p)=0; % else % % xk2(p)=xk1(p); % end % % end % % % x(u+1,:)=xk2; %Actualization of the new vector of variables int the martrix % % % % % end % for j=1:length(l) % % if (l(j)<(10) || l(j)>(30)) % % GRO(j)=155; % % else % % GRO(j)=155*1.3; % % % end % % end % GRI=x(:,1); R=x(:,2); CC=x(:,3); V=x(:,4); % % figure(1) plot(l,R)%,l,GRO)%,l,CC,l,V) legend('Receptor')%,'Glucocorticoid') %, 'Complex', 'Signal') xlabel('Time') ylabel('Concetration (micromolar)') title('Glucocorticoid model') % figure(2) plot(l,CC)%,l,GRO) legend('Complejo')%,'Glucocorticoid') % figure(3) plot(l,V)%,l,GRO) legend('Senal')%,'Glucocorticoid') % figure(4) plot(l,GRI)%,l,GRO) legend('GRI')%,'Glucocorticoid') %
Stochastic
% %Stochastic Simulation of the Chemical Reactions of the Glucocorticoid %System % % %%----Parameters of the System---- global gammaGR mGRIR mCC deltaGRI alfaR deltaR deltaCC betaCC k n deltaS H % %%-----Initial Conditions of the glucocorticoid system----- %Run CondIndGluco.m with the parameters of the system. % con=condiciones(); % GRO_0= round(10000); %Glucocorticoid Outside the Cell GRI_0 = round(con(1)); %Glucocorticoid Inside the Cell R_0= round(con(2)); %Receptor CC_0= round(con(3)); %Receptor- Glucocorticoid Complex V_0= round(con(4));%Signal % %%----Simulation Constants---- numCells = 10; numEvents= 60000; numCurves = 5; % Restriction(numCurves<numCells) Step=0.1; tMax=45; %Minutes % %Plot the behaviour of the molecule 1/0 for yes/no Plot_GRO = 1; Plot_GRI=1; Plot_R =1; Plot_CC = 1; Plot_V = 1; PlotMean=1; % %%----Stochastic Simulation---- %Variables of the System GRO= zeros(numCells,numEvents); GRI= zeros(numCells,numEvents); R= zeros(numCells,numEvents); CC= zeros(numCells,numEvents); V = zeros(numCells,numEvents); % t = zeros(numCells,numEvents); %Time tr = zeros(numCells,numEvents); %Initial Conditions GRO(:,1)=GRO_0*ones(numCells,1); GRI(:,1)=GRI_0*ones(numCells,1); R(:,1)=R_0*ones(numCells,1); CC(:,1)=CC_0*ones(numCells,1); V(:,1)=V_0*ones(numCells,1); % %Stochastic Simulation % for S_ns =1:numCells % % for S_ne = 1:numEvents %Random numbers drawn from uniform distribution between zero and %one rand1 = rand(1); %This determine time rand2 = rand(1); %This determine Event % %Events (Description in attached document) e1= gammaGR*GRO(S_ns,S_ne); e2= gammaGR*GRI(S_ns,S_ne); e3= mGRIR*GRI(S_ns,S_ne)*R(S_ns,S_ne); e4= mCC*CC(S_ns,S_ne); e5= deltaGRI*GRI(S_ns,S_ne); e6= alfaR; e7= deltaR*R(S_ns,S_ne); e8= deltaCC*CC(S_ns,S_ne); %e8= (betaCC*((CC(S_ns,S_ne))^n))/(k^n)+ ((CC(S_ns,S_ne))^n); e9= H*((betaCC*((CC(S_ns,S_ne))^n))/((k^n)+ ((CC(S_ns,S_ne))^n))); e10= deltaS*V(S_ns,S_ne); % %Vector of Events vecEvents = [e1,e2,e3,e4,e5,e6,e7,e8,e9,e10]; % %Sum of Events sumEvents = sum(vecEvents); % %Waitiing time until the next ocurrence of a reaction time %Probabilistic Distribution time= (1/sumEvents)*log(1/rand1); tr(S_ns,S_ne)=time; t(S_ns,S_ne+1)= t(S_ns,S_ne)+ time; % % %Glucocorticoid outside the cell % GRO(S_ns,S_ne+1)=funcImpulso(t(S_ns,S_ne+1)); if(t(S_ns,S_ne)<130) GRI(S_ns,S_ne)=funcImpulso(t(S_ns,S_ne+1))*957/2575; end % %Simulation Creation/Destruction of each molecule if rand2<(vecEvents(1)/sumEvents) % GRI(S_ns,S_ne+1)= GRI(S_ns,S_ne)+1; R(S_ns, S_ne+1)= R(S_ns,S_ne); CC(S_ns, S_ne+1)= CC(S_ns,S_ne); V(S_ns, S_ne+1) = V(S_ns,S_ne); % elseif rand2< (sum(vecEvents(1:2)))/sumEvents if GRI(S_ns,S_ne)<=0 % GRI(S_ns,S_ne+1)= 0; else GRI(S_ns,S_ne+1)= GRI(S_ns,S_ne)-1; end % R(S_ns, S_ne+1)= R(S_ns,S_ne); CC(S_ns, S_ne+1)= CC(S_ns,S_ne); V(S_ns, S_ne+1) = V(S_ns,S_ne); % % elseif rand2< (sum(vecEvents(1:3)))/sumEvents % if R(S_ns,S_ne)<=0 || GRI(S_ns,S_ne)<=0 CC(S_ns, S_ne+1)= CC(S_ns,S_ne); R(S_ns, S_ne+1)= R(S_ns,S_ne); GRI(S_ns,S_ne+1)= GRI(S_ns,S_ne); else CC(S_ns, S_ne+1)= CC(S_ns,S_ne)+1; R(S_ns, S_ne+1)= R(S_ns,S_ne)-1; GRI(S_ns,S_ne+1)= GRI(S_ns,S_ne)-1; end V(S_ns, S_ne+1) = V(S_ns,S_ne); % % elseif rand2< (sum(vecEvents(1:4)))/sumEvents % if CC(S_ns,S_ne)<=50 CC(S_ns,S_ne+1)=0; GRI(S_ns,S_ne+1)= GRI(S_ns,S_ne); R(S_ns, S_ne+1)= R(S_ns,S_ne); else CC(S_ns, S_ne+1)= CC(S_ns,S_ne)-50; GRI(S_ns,S_ne+1)= GRI(S_ns,S_ne)+50; R(S_ns, S_ne+1)= R(S_ns,S_ne)+50; end % V(S_ns, S_ne+1) = V(S_ns,S_ne); % elseif rand2< (sum(vecEvents(1:5)))/sumEvents % if GRI(S_ns,S_ne)<=0 GRI(S_ns,S_ne+1)=0; else GRI(S_ns,S_ne+1)= GRI(S_ns,S_ne)-10; end % % R(S_ns, S_ne+1)= R(S_ns,S_ne); CC(S_ns, S_ne+1)= CC(S_ns,S_ne); V(S_ns, S_ne+1) = V(S_ns,S_ne); % elseif rand2< (sum(vecEvents(1:6)))/sumEvents % GRI(S_ns,S_ne+1)= GRI(S_ns,S_ne); R(S_ns, S_ne+1)= R(S_ns,S_ne)+600; CC(S_ns, S_ne+1)= CC(S_ns,S_ne); V(S_ns, S_ne+1) = V(S_ns,S_ne); % elseif rand2< (sum(vecEvents(1:7)))/sumEvents % if R(S_ns,S_ne)<=0 R(S_ns,S_ne+1)=0; else R(S_ns, S_ne+1)= R(S_ns,S_ne)-300; end % % GRI(S_ns,S_ne+1)= GRI(S_ns,S_ne); CC(S_ns, S_ne+1)= CC(S_ns,S_ne); V(S_ns, S_ne+1) = V(S_ns,S_ne); % elseif rand2< (sum(vecEvents(1:8)))/sumEvents if CC(S_ns,S_ne)<=35 CC(S_ns,S_ne+1)=round(CC(S_ns,S_ne)*0.75); else CC(S_ns, S_ne+1)= CC(S_ns,S_ne)-35; % end GRI(S_ns,S_ne+1)= GRI(S_ns,S_ne); R(S_ns, S_ne+1)= R(S_ns,S_ne); V(S_ns, S_ne+1) = V(S_ns,S_ne); % elseif rand2< (sum(vecEvents(1:9)))/sumEvents % GRI(S_ns,S_ne+1)= GRI(S_ns,S_ne); R(S_ns, S_ne+1)= R(S_ns,S_ne); CC(S_ns, S_ne+1)= CC(S_ns,S_ne); V(S_ns, S_ne+1) = V(S_ns,S_ne)+1000; % else if V(S_ns,S_ne)<=0 V(S_ns,S_ne+1)=0; else V(S_ns, S_ne+1)= V(S_ns,S_ne)-500; end % GRI(S_ns,S_ne+1)= GRI(S_ns,S_ne); R(S_ns, S_ne+1)= R(S_ns,S_ne); CC(S_ns, S_ne+1)= CC(S_ns,S_ne); % end end end % %% ------------- Time Regularization ----------------------------- time=t; % [orgTime, newGRO] = regIntervalFixed2(time, GRO, Step, tMax); [orgTime, newGRI] = regIntervalFixed2(time,GRI, Step, tMax); [orgTime, newR] = regIntervalFixed2(time, R, Step, tMax); [orgTime, newCC] = regIntervalFixed2(time, CC, Step, tMax); [orgTime, newV] = regIntervalFixed2(time, V, Step, tMax); % GROMean=mean(newGRO); GRIMean=mean(newGRI); RMean=mean(newR); CCMean=mean(newCC); VMean=mean(newV); % % %% Plotting % figure(1) % plot(t(1,:),GRI(1,:),t(1,:),GRO) % title('GRI') % figure(2) % plot(t(1,:),R(1,:)) % title('R') % figure(3) % plot(t(1,:),V(1,:)) % title('V') % figure(4) % plot(t(1,:),CC(1,:)) % title('CC') % if Plot_GRO figure, % for i= 1:numCurves stairs(orgTime,newGRO(i,:)) hold on end %if PlotMean %stairs(orgTime,GROMean,'r') %end hold off % title(); xlabel('Time(min)'); ylabel('Glucocorticoid Outside The Cell(Molecules)'); end % if Plot_GRI figure, for i= 1:numCurves stairs(orgTime,newGRI(i,:)) % hold on end % if PlotMean stairs(orgTime,GRIMean,'r','LineWidth',2.5) end hold off % title(); xlabel('Time(min)'); ylabel('Glucocorticoid Inside The Cell(Molecules)'); end % if Plot_R figure, for i= 1:numCurves stairs(orgTime,newR(i,:)) hold on end % if PlotMean stairs(orgTime,RMean,'r','LineWidth',2.5) end hold off % title(); xlabel('Time(min)'); ylabel('Receptor(Molecules)'); end % if Plot_CC figure, for i= 1:numCurves stairs(orgTime,newCC(i,:)) hold on end % if PlotMean stairs(orgTime,CCMean,'r','LineWidth',2.5) end hold off % title(); xlabel('Time(min)'); ylabel('Receptor-Glucocorticoid Complex(Molecules)'); end % if Plot_V figure, for i= 1:numCurves stairs(orgTime,newV(i,:)) hold on end % if PlotMean stairs(orgTime,VMean,'r','LineWidth',2.5) end hold off % title(); xlabel('Time(min)'); ylabel('Signal Production(Molecules)'); end % % % % % % % % % % % % %
Nickel removal system
Deterministic model
Equations
% function y = EqNick(x,t) % %--Parameters---% % global gammaN Kp beta Kd Kx alfaR deltaR Kt deltaT n alfaP deltaP % % % No=x(1); % Niquel outside the cell % %------ Variables%------% % Ni= x(2); %Nickel Inside the cell R=x(3); %RcnR (Repressor) T=x(4); %RcnR Tetramer P=x(5); %Porine % % %---Equations---% % dNo=-gammaN*(No-Ni) - Kp*P*No; dNi=gammaN*(No-Ni) + Kp*P*No- beta/(1 + (T/(Kd*(1+(Ni/Kx))^n))); dR=alfaR-deltaR*R - Kt*R^4; dT= Kt*R^4 - deltaT*T - beta/(1 + (T/(Kd*(1+(Ni/Kx))^n))); dP=alfaP - deltaP*P + beta/(1 + (T/(Kd*(1+(Ni/Kx))^n))); % y1(1)=dNo; y1(2)=dNi; y1(3)=dR; y1(4)=dT; y1(5)=dP; % y= y1'; % end
Equation solver
% % clear all clc % % % %---------Parameters------% % % % global gammaN Kp beta Kd Kx alfaR deltaR Kt deltaT n alfaP deltaP % gammaN=0.5034e-4; %Diffussion rate of Nickel (1/min) % Kp=0.000634; %Dynamic constant for the entrance of nickel to the cell % beta=0.166; %Porine maximum expression rate (nM/min) % Kd=276e-3; %Association constant DNA and repressor (nM) % Kx=25e-3; %Association constant of the repressor with nickel (nM) % alfaR= 5; %Represor basal production rate (nM/min) % deltaR=1/1200; % Represor destruction rate (1/min) % Kt=820e-3;% Rate constant for the formation of the tetramer (Giraldo et al) % deltaT=1/1200; %Tetramer destruction rate (!/min) % n=1; %Hill coefficient (cooperation constant) % alfaP=0.031; %Porine basal production rate (nM/min) % deltaP=1/1200;%Porine destruction rate (1/min) % % % yo=[0 0 0 0]; % con=fsolve(@(x)CondIniciales(x),yo, optimset('display','iter','MaxIter',1000000,'algorithm','levenberg-marquardt','tolfun',1e-9)); % assignin('base','ini',con); % % cond=abs(con); % h=30; %Tiempo maximo % m=0.01; %Paso l=(0:m:h);%Vector de tiemp % condI=[9.88e3 cond]; x=zeros(length(l),length(condI)); x(1,:)=condI; % for k=1:length(l)-1 % xk=x(k,:); %Captura de la ultima posicion de la matirz, es decir, los valores actuales de las variables % k1=EqNick(xk,l(k)); %Primera pendiente del metodo de RK4 k2=EqNick(xk+(m/2*k1)',l(k)+m/2); %Segunda pendiente del metodo de RK4 k3=EqNick(xk+(m/2*k2)',l(k)+m/2); %Tercera pendiente del metodo de RK4 k4=EqNick(xk+(m*k3)',l(k)+m); %Cuarta pendiente del metodo de RK4 % xk1=xk+m/6*(k1+2*k2+2*k3+k4)'; %Calculo de nuevos valores para las %variables % %xk1=xk+m*ecuaDif(l(k),xk)'; %Method of Newton % xk2=zeros(1,length(xk1)); % % for p=1:length(xk1) % if(xk1(p)<0.00000001) % xk2(p)=0; else % xk2(p)=xk1(p); end % end % % x(k+1,:)=xk2; %Actualizacion del nuevo vector de variables en la matriz % % % % end % No=x(:,1); Ni=x(:,2); assignin('base','No',No); assignin('base','Nistable',Ni(length(Ni))); disp(Ni(length(Ni))) R=x(:,3); assignin('base','Rstable',R(length(R))); T=x(:,4); assignin('base','Tstable',T(length(T))); P=x(:,5); assignin('base','Pstable',P(length(P))); cond=[R(length(R)) T(length(T)) P(length(P))]; assignin('base','cond',cond); figure(1) plot(l,No,l,P) legend('No','P') xlabel('Time (min)') ylabel('Concentration (nM)') figure(2) plot(l,Ni) legend('Ni') xlabel('Time (min)') ylabel('Concentration (nM)') figure(3) plot(l,R) legend('R') xlabel('Time (min)') ylabel('Concentration (nM)') figure(4) plot(l,T) legend('T') xlabel('Time (min)') ylabel('Concentration (nM)') figure(5) plot(l,P) legend('P') xlabel('Time (min)') ylabel('Concentration (nM)') %