Team:ETH Zurich/Modeling/InitialStates

From 2013.igem.org

(Difference between revisions)
Line 63: Line 63:
\begin{align}
\begin{align}
-
[GusA]_{ss}= \frac{\alpha_{GusA} \cdot k_{leaky} \cdot [LuxR]_{ss} Lux/d_{GusA}} \approx 3.2461 \mu M
+
[GusA]_{ss}= \frac{\alpha_{GusA} \cdot k_{leaky} \cdot [LuxR]_{ss}{{d_{GusA}}} \approx 3.2461 \mu M
\end{align}
\end{align}
\begin{align}
\begin{align}
-
[AES]_{ss}= \frac{\alpha_{AES} \cdot k_{leaky} \cdot [LuxR]_{ss} Lux/d_{AES}} \approx 3.2461 \mu M
+
[AES]_{ss}= \frac{\alpha_{AES} \cdot k_{leaky} \cdot [LuxR]_{ss}}{d_{AES}}} \approx 3.2461 \mu M
\end{align}
\end{align}
<br clear="all"/>
<br clear="all"/>
{{:Team:ETH_Zurich/templates/footer}}
{{:Team:ETH_Zurich/templates/footer}}

Revision as of 19:12, 28 October 2013

Header2.png
80px-Eth igem logo.png

Contents

Initial States

It is important to obtain the steady state concentration of molecules in our biological circuit, since these values can be used as biologically meaningful initial conditions for subsequent simulations. To achieve this goal, we implemented a Single Cell Model. The cells plated on the game plate are from an overnight liquid culture. Thus, we assume that the levels of the proteins of our engineered system in the cells have reached steady state.

Initial state for the Mine Cells

The mine colonies produce three molecules, NagZ, LuxI and AHL, that are important in our bio-game. The proteins NagZ and LuxI are constitutively produced, whereas the synthesis of AHL is dependent on LuxI. Moreover, degradation of these proteins is modeled as linear degradation. We have also taken into account the contribution of the dynamic evolution of AHL due to diffusion toward/from the medium, distinguishing between intracellular and extracellular concentrations (Garcia-Ojalvo et. al., 2004.)

The ODEs for the states involved in the mine cells are given below:

\begin{align} \frac{d[LuxI]}{dt} =\alpha_{LuxI} - d_{LuxI} \cdot [LuxI]\\ \end{align}

\begin{align} \frac{d[NagZ]}{dt} =\alpha_{NagZ} - d_{NagZ} \cdot [NagZ]\\ \end{align}

\begin{align} \frac{d[AHL,i]}{dt}= \alpha_{AHL} \cdot [LuxI]-d_{AHL,i} \cdot [AHL,i] - \eta \cdot \left([AHL,i]-[AHL,e]\right)\\ \end{align}

\begin{align} \frac{d[AHL,e]}{dt}= -d_{AHL,e} \cdot [AHL,e] + \eta_{ext} \sum_{j=1}^{n} \left([AHL,j]-[AHL,e]\right)\\ \end{align}

System of differential equations for a sender cells, where $\eta = \sigma \cdot A/V_{c}$ measures the diffusion across the cell membrane, with $\sigma$ representing the membrane permeability, $A$ its surface area and $V_{c}$ the cell volume, and $\eta_{ext} = \delta/V_{ext}$ with $V_{ext}$ being the total extracellular volume.


Figure 1: Steady state concentrations for Mine Cells


The concentration of the species at steady state can be solved analytically, obtaining solutions consistent with the numerical solution (Fig. 1):

\begin{align} [LuxI]_{ss} =\frac{\alpha_{LuxI}} {d_{LuxI}} \approx 59.8802 \mu M \end{align}

\begin{align} [NagZ]_{ss} =\frac{\alpha_{NagZ}} {d_{NagZ}} \approx 43.2809 \mu M \end{align}

\begin{align} [AHL,i]_{ss}= \frac{\alpha_{AHL} \cdot [LuxI]_{ss}} {d_{AHL,i} + \eta \cdot \left(1-\frac{\eta_{ext}}{d_{AHL,e}+\eta_{ext}}\right)} \approx 55.8492 \mu M \end{align}

\begin{align} [AHL,e]_{ss}= \frac{ \eta_{ext} \cdot [AHL,i]_{ss}}{d_{AHL,e} + \eta_{ext} } \approx 55.8291 \mu M \end{align}

Initial state for the Receiver Cells

It should be noted that the receiver cells grow in the absence of AHL in the medium and this affects the concentrations of intracellular species whose production depends on AHL.

Figure 2: Steady state concentrations for Receiver Cells.
Figure 3: Steady state concentrations for Receiver Cells

\begin{align} [LuxR]_{ss}= \frac{\alpha_{LuxR}/d_{LuxR}} \approx 0.5 \mu M \end{align}

\begin{align} [GusA]_{ss}= \frac{\alpha_{GusA} \cdot k_{leaky} \cdot [LuxR]_{ss}{{d_{GusA}}} \approx 3.2461 \mu M \end{align}

\begin{align} [AES]_{ss}= \frac{\alpha_{AES} \cdot k_{leaky} \cdot [LuxR]_{ss}}{d_{AES}}} \approx 3.2461 \mu M \end{align}