Team:Calgary/Project/OurSensor/Detector
From 2013.igem.org
Detector
Detector
For the DNA detector in our system, we decided to use Transcription Activator-Like Effectors (TALEs). These are naturally occurring proteins that specifically bind to DNA. TALEs are an advantageous tool in synthetic biology because they can be modified to recognize a any chosen DNA sequence as long as it starts with a thymine. In our case, we want them to bind to a sequence in enterohemorrhagic E. coli (EHEC). We have engineered TALEs that are specially designed to bind segments of the stx2 gene in the EHEC genome (BBa_K1189032 and BBa_K1189033). To find out more about how we designed our TALEs, click here. This summer we also worked with TALEs from the iGEM Parts Registry to build and test our constructs, for our proof of concept. To see what we accomplished with our TALEs, check out our results section. To learn more about TALE proteins, see our background section.
Background
Transcription Activator-Like Effectors (TALEs) are proteins produced by bacteria of the genus Xanthomonas and secreted into plant cells. These naturally occurring TALEs play a key role in bacterial infection, as they are responsible for upregulation of the host genes required for pathogenic growth and expansion (Mussolino & Cathomen, 2012).
All TALEs are made up of three main parts: N-terminus, DNA binding domain, and C-terminus. The N-terminus contains a type III secretion signal (T3SS), which allows the proteins to be translocated from the bacterium and into the plant cell. The C-terminus contains nuclear localization signals (NLS) and an acidic activation domain (AAD). The DNA binding domain, also termed repeat region, mediates DNA recognition through tandem repeats of 33 to 35 amino acids residues each (Bogdanove et al., 2010). The binding domain usually comprises 15.5 to 19.5 single repeats (Figure 1). The last repeat, close to the C-terminus, is called “half-repeat,” because it generally is 20 amino acids in length. Although the modules have conserved sequences, polymorphisms are found in residues 12 and 13, also known as “repeat-variable di-residues” (RVD). RVDs can be specific for one nucleotide or a number of nucleotides; therefore, 19.5 repeat units target a specific 20-nucleotide sequence in the DNA (Mussolino & Cathomen, 2012).
When in contact with the DNA, the TALE aligns the N-terminal to the 5' end of the DNA and the C-terminal to the 3’ end of the DNA. Each repeat is made of two alpha helices connected by a three-residue loop, two of which amino acids comprise an RVD. Although both amino acids 12 and 13 are responsible for base specificity, the TALE-DNA interaction happens through intermolecular bonds between residue 13 and the target base in the major groove of the DNA. Residue 12 plays a role in stabilizing the RVD loop (Meckler et al., 2013).
Over 20 different RVDs have been identified in TAL effectors. However, four of them appear in 75% of the repeats: HD, NG, NI and NN (Bogdanove et al., 2010). Quantitative analysis of DNA-TALE interactions by Meckler et al. (2013) revealed that the binding affinity is affected by the RVDs in the following order (The letters in brackets show the base that the RVD binds to): NG (T) > HD (C) ~ NN (G)>> NI (A) > NK (G). NG, specific to thymine, and HD, specific to cytosine, are strong RVDs. NN binds both guanine and adenine, but it prefers guanine. NK also interacts with guanine, but with 103-fold lower affinity. NI is specific for adenine, but it has low affinity when compared to strong RVDs such as NG and HD (Meckler et al., 2013). Although less common, another naturally occurring RVD, NH, was described to bind strongly to guanine (Cong et al., 2013). NS binds to any of the four bases and it is present in naturally occurring TALEs such as AvrBs3 from Xanthomonas campestris (Boch et al., 2009).
In addition to RVDs, the DNA binding affinity is also subject to polarity effects. Point mutations at the 5’ end of the target sequence affect TALE-DNA recognition more than the ones at the 3’ end (Meckler et al., 2013). Taking this in consideration, recommendations for TALE design include incorporation of strong RVDs close to the N-terminus (Streubel et al., 2012).
Due to the modular and easy to engineer nature of TALEs they can be designed to bind virtually any DNA sequence, making them a powerful tool in synthetic biology. They have been extensively used for genome editing in the literature (Mussolino et al, 2011) by fusing DNA cleavage domains of endonucleases to serve as custom restriction enzymes (Beurdeley et al., 2013). These engineered proteins are termed TALENs or Transcription Activator-Like Effector Nucleases. TALENs are also used in gene knockout because they promote gene disruption (Bogdanove & Voytas, 2011). Slovenia 2012 iGEM team designed and created repressor TAL effectors by adding repressor and activator domains to TALEs to control gene expression.
Our team, however, proposes an innovative application for TAL effectors: Using TALE as a nucleotide biosensor. We engineered TALEs to detect entero-haemorrhagic bacteria in feces of BBa_K782004 in cattle populations. As sensors, TALEs can bind to specific regions of the Shiga toxin II gene (stx2) and capture the DNA of interest from a feces sample, making it available for a second TALE, whose binding domain is specific for another region of stx2. This second TALE is connected to a reporter, which makes the TALE-DNA interaction visible within a short period of time.