Team:Heidelberg/Project
From 2013.igem.org
HannahMeyer (Talk | contribs) |
HannahMeyer (Talk | contribs) |
||
Line 211: | Line 211: | ||
<div style="text-align:justify; margin:2%"> | <div style="text-align:justify; margin:2%"> | ||
Peptides represent an astonishingly diverse class of molecules comprising highly versatile functions ranging from signaling, detoxifying and antibiotic function to enzymatic activity in nature. The invention of solid-phase synthesis of small peptides pioneered by Robert Bruce Merrifield in 1963 <span class="citation">[1]</span> sparked the hope to exploit and use those functions for our own purposes. This set the basis for an entirely novel research field termed “synthetic peptide chemistry” associated with big hopes to now being able to engineer novel antibiotics and develop peptides for solving environmental issues. <br> | Peptides represent an astonishingly diverse class of molecules comprising highly versatile functions ranging from signaling, detoxifying and antibiotic function to enzymatic activity in nature. The invention of solid-phase synthesis of small peptides pioneered by Robert Bruce Merrifield in 1963 <span class="citation">[1]</span> sparked the hope to exploit and use those functions for our own purposes. This set the basis for an entirely novel research field termed “synthetic peptide chemistry” associated with big hopes to now being able to engineer novel antibiotics and develop peptides for solving environmental issues. <br> | ||
- | Although solid-phase peptide synthesis could be successfully standardized and automated, an important limitation was never overcome: the method is too expensive to be applied for industry-scale production of synthetic peptides. <br> | + | Although solid-phase peptide synthesis could be successfully standardized and automated, an important limitation was never overcome: the method is too expensive to be applied for industry-scale production of synthetic peptides <span class="citation">[2]</span>. <br> |
- | <b>Recombinant peptide synthesis</b> invented in the 1980s was advertised as an alternative to chemical peptide synthesis, as it is easily scalable once the production is up and running. However, this approach is mostly restricted to peptides composed of <b>proteinogenic amino acids</b>, thus limiting the number of available amino acid building blocks and thereby narrowing the applicability of this approach | + | <b>Recombinant peptide synthesis</b> invented in the 1980s was advertised as an alternative to chemical peptide synthesis <span class="citation">[3,4]</span>, as it is easily scalable once the production is up and running (reviewed in <span class="citation">[5]</span>). However, this approach is mostly restricted to peptides composed of <b>proteinogenic amino acids</b> <span class="citation">[6]</span>, thus limiting the number of available amino acid building blocks and thereby narrowing the applicability of this approach. |
</div> | </div> | ||
Line 224: | Line 224: | ||
<div class="row"> | <div class="row"> | ||
<div class="col-md-8" style="text-align:justify"> | <div class="col-md-8" style="text-align:justify"> | ||
- | Our team developed a novel approach for creating customized peptides that overcomes the above mentioned limitations by engineering synthetic <b>Non-Ribosomal Peptide Synthetases (NRPSs)</b>. NRPSs are organized in modules recognizing one specific amino acid substrate and catalyzing the formation of a peptide bond between the amino acid substrate and the nascent peptide chain. Notably, non-ribosomal peptide synthesis does not require mRNA to direct the sequence of amino acid monomers incorporated into the growing peptide and is therefore <b>not limited</b> to proteinogenic amino acids (reviewed in <span class="citation">[ | + | Our team developed a novel approach for creating customized peptides that overcomes the above mentioned limitations by engineering synthetic <b>Non-Ribosomal Peptide Synthetases (NRPSs)</b>. NRPSs are organized in modules recognizing one specific amino acid substrate and catalyzing the formation of a peptide bond between the amino acid substrate and the nascent peptide chain. Notably, non-ribosomal peptide synthesis does not require mRNA to direct the sequence of amino acid monomers incorporated into the growing peptide and is therefore <b>not limited</b> to proteinogenic amino acids (reviewed in <span class="citation">[7]</span>). |
</div> | </div> | ||
<div class="col-md-4"> | <div class="col-md-4"> | ||
Line 266: | Line 266: | ||
<div class="row"> | <div class="row"> | ||
<div class="col-md-8" style="text-align:justify"> | <div class="col-md-8" style="text-align:justify"> | ||
- | To exemplify the infinite application possibilities of NRPSs, we developed an sustainable procedure for <a href="https://2013.igem.org/Team:Heidelberg/Project/Delftibactin">gold recycling from electronic waste</a> using the non-ribosomal peptide Delftibactin produced by <i>Delftia acidovorans</i>, which is known to precipitate elemental gold from gold-ion solutions <span class="citation">[ | + | To exemplify the infinite application possibilities of NRPSs, we developed an sustainable procedure for <a href="https://2013.igem.org/Team:Heidelberg/Project/Delftibactin">gold recycling from electronic waste</a> using the non-ribosomal peptide Delftibactin produced by <i>Delftia acidovorans</i>, which is known to precipitate elemental gold from gold-ion solutions <span class="citation">[8]</span>. Currently, we are working on transferring the complete delftibacin production pathway into <i>E. coli</i> in order to increase yield and lower costs of delftibactin production. |
<br><br> | <br><br> | ||
We believe, that our project demonstrates the power of non-ribosomal peptide synthesis and that our standardized framework will enable the synthetic biology community to use this power to address many of the challenges of our century. | We believe, that our project demonstrates the power of non-ribosomal peptide synthesis and that our standardized framework will enable the synthetic biology community to use this power to address many of the challenges of our century. | ||
Line 279: | Line 279: | ||
<div class="col-sm-12 jumbotron" style="font-size:10px; margin-top:5%"> | <div class="col-sm-12 jumbotron" style="font-size:10px; margin-top:5%"> | ||
<div class="references"> | <div class="references"> | ||
- | <p>1. Merrifield RB (1963) Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 85 (14): 2149–2154 | + | <p>1. Merrifield RB (1963) Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 85 (14): 2149–2154</p> |
- | <p>2. Marahiel MA, Stachelhaus T, Mootz HD (1997)Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis. Chem Rev. 97(7):2651-2674 | + | <p>2. Marahiel MA, Stachelhaus T, Mootz HD (1997)Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis. Chem Rev. 97(7):2651-2674</p> |
- | <p>3. </p> | + | <p>3. Löwenadler B, Jansson B, Paleus S, Holmgren E, Nilsson B, Moks T, Palm G, Josephson S, Philipson L, Uhlén M (1987) A gene fusion system for generating antibodies against short peptides. Gene 58(1):87-97</p> |
- | <p> | + | <p>4. Nilsson B, Moks T, Jansson B, Abrahmsén L, Elmblad A, Holmgren E, Henrichson C, Jones TA, Uhlén M. (1987) A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng. 1(2):107-13</p> |
- | <p> | + | <p>5. Bommarius B, Jenssen H, Elliott M, Kindrachuk J, Pasupuleti M, Gieren H, Jaeger KE, Hancock RE, Kalman D. (2010) Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli. |
+ | Peptides 31(11):1957-65</p> | ||
+ | <p>6. Lu Y, Freeland S. (2006) On the evolution of the standard amino-acid alphabet. Genome Biol.7(1):102 | ||
+ | <p>7. Andersson L, Blomberg L, Flegel M, Lepsa L, Nilsson B, Verlander M (2000) Large-scale synthesis of peptides. Peptide Science 55(3):227–250</p> | ||
+ | <p>8. Johnston CW, Wyatt MA, Li X, Ibrahim A, Shuster J, et al. (2013) Gold biomineralization by a metallophore from a gold-associated microbe. Nature chemical biology 9: 241–243.</p> | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 17:07, 27 October 2013
Our Project. Foundational Advance in Peptide Synthesis.
Highlights
- Novel approach for creating customized peptides
- Demonstration of NRPS modularity
- Engineering of entirely synthetic NRPS domains
- Blue pigment tag for in-vivo labeling of synthetic peptides
- Software for in-silico design of custom NRPSs
- Sustainable and efficient gold recycling from electronic waste using Delftibactin
Abstract
Several secondary metabolites, such as commonly used antibiotics, pigments and detoxifying enzymes, are synthesized by non-ribosomal peptide synthetases (NRPSs). These enzymes beautifully reflect one of the fundamental principles of synthetic biology, as they are remarkably modular. We will assemble new NRPSs by combining individual domains and modules of different origin, thus setting the basis for novel and customized synthesis of non-ribosomal peptides. To make the use of NRPSs amenable to a wider community, we will devise a new software-tool, called “NRPS Designer”, which predicts the optimal modular composition of synthetic NRPSs for production of any desired peptide and outputs a cloning strategy based on Gibson assembly. As an application relevant to society, we will engineer Escherichia coli to recycle gold from electronic waste in a cost- and energy-efficient way through the heterologous expression of the NRPS pathway of Delftia acidovorans that naturally enables precipitation of gold ions from solution.
Although solid-phase peptide synthesis could be successfully standardized and automated, an important limitation was never overcome: the method is too expensive to be applied for industry-scale production of synthetic peptides [2].
Recombinant peptide synthesis invented in the 1980s was advertised as an alternative to chemical peptide synthesis [3,4], as it is easily scalable once the production is up and running (reviewed in [5]). However, this approach is mostly restricted to peptides composed of proteinogenic amino acids [6], thus limiting the number of available amino acid building blocks and thereby narrowing the applicability of this approach.
Non-Ribosomal Peptide Synthesis
Applications and Usage of NRPSs
Furthermore, we developed a procedure for improving the functionality of NRPS modules by shuffling single domains derived from different species and by engineering entirely synthetic domains. As proof of concept, we shuffled domains within the unimodular blue pigment NRPS IndC or introduced synthetic domains derived from consensus sequences across different species. To this end, we applied a novel cloning approach termed HiCT, which enables a cost-efficient and rapid assembly of synthetic NRPS module libraries BBF RFC 99.
Remarkably, we were able to engineer a library of IndC modules exhibiting varying blue pigment production efficacies in combination with different NRPS activating PPTases. Notably, a subset of these synthetic IndC variants showed a broader PPTase specificity compared to their natural counterpart.
Furthermore, we identified the location of domain borders and optimized linker regions used for introduction of synthetic domains.
Standardized NRPS-Assembly
The importance of the environment
We believe, that our project demonstrates the power of non-ribosomal peptide synthesis and that our standardized framework will enable the synthetic biology community to use this power to address many of the challenges of our century.
1. Merrifield RB (1963) Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 85 (14): 2149–2154
2. Marahiel MA, Stachelhaus T, Mootz HD (1997)Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis. Chem Rev. 97(7):2651-2674
3. Löwenadler B, Jansson B, Paleus S, Holmgren E, Nilsson B, Moks T, Palm G, Josephson S, Philipson L, Uhlén M (1987) A gene fusion system for generating antibodies against short peptides. Gene 58(1):87-97
4. Nilsson B, Moks T, Jansson B, Abrahmsén L, Elmblad A, Holmgren E, Henrichson C, Jones TA, Uhlén M. (1987) A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng. 1(2):107-13
5. Bommarius B, Jenssen H, Elliott M, Kindrachuk J, Pasupuleti M, Gieren H, Jaeger KE, Hancock RE, Kalman D. (2010) Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli. Peptides 31(11):1957-65
6. Lu Y, Freeland S. (2006) On the evolution of the standard amino-acid alphabet. Genome Biol.7(1):102
7. Andersson L, Blomberg L, Flegel M, Lepsa L, Nilsson B, Verlander M (2000) Large-scale synthesis of peptides. Peptide Science 55(3):227–250
8. Johnston CW, Wyatt MA, Li X, Ibrahim A, Shuster J, et al. (2013) Gold biomineralization by a metallophore from a gold-associated microbe. Nature chemical biology 9: 241–243.