Team:Heidelberg/Modelling/Ind Production
From 2013.igem.org
Line 104: | Line 104: | ||
<h2 id="introduction">Introduction</h2> | <h2 id="introduction">Introduction</h2> | ||
<p> | <p> | ||
- | Mathematical modelling allows for <bib id="pmid24098642"/> | + | Based on coupled ordinary differential equations (ODEs). |
+ | Mathematical modelling allows for <bib id="pmid24098642"/> Identifiability analysis<bib id="pmid21198117"/> | ||
</p> | </p> | ||
<p> | <p> | ||
Line 117: | Line 118: | ||
<h2 id="results">Results </h2> | <h2 id="results">Results </h2> | ||
+ | <p> | ||
+ | The ODE system determining the time evolution of the dynamical variables is given by the following four equations: | ||
+ | |||
+ | $$ \mathrm{d}\mathrm{[Bac]}/\mathrm{d}t = -\frac{\mathrm{[Bac]} \cdot \left(\mathrm{[Bac]} - \mathrm{Bacmax\_native\_svp}\right) \cdot \left(\mathrm{beta\_native\_svp} - \mathrm{[Ind]} \cdot \mathrm{ki\_native\_svp}\right)}{\mathrm{Bacmax\_native\_svp}} $$ | ||
+ | |||
+ | $$\mathrm{d}\mathrm{[Glu]}/\mathrm{d}t = - \mathrm{[Bac]} \cdot \mathrm{[Glu]} \cdot \mathrm{ksyn\_native\_svp} $$ | ||
+ | |||
+ | $$\mathrm{d}\mathrm{[cGlu]}/\mathrm{d}t = - \mathrm{kdim\_native\_svp} \cdot {\mathrm{[cGlu]}}^2 - \mathrm{kdegg\_native\_svp} \cdot \mathrm{[cGlu]} + \mathrm{[Bac]} \cdot \mathrm{[Glu]} \cdot \mathrm{ksyn\_native\_svp} $$ | ||
+ | |||
+ | $$\mathrm{d}\mathrm{[Ind]}/\mathrm{d}t = {\mathrm{[cGlu]}}^2 \cdot \mathrm{kdim\_native\_svp} - \mathrm{[Ind]} \cdot \mathrm{kdegi\_native\_svp} $$ | ||
+ | |||
+ | |||
+ | </p> | ||
+ | |||
</html> | </html> | ||
Revision as of 20:13, 26 October 2013
Indigoidine Production. Quantitative dynamic modeling.
Highlights
- Suitable model for bacterial growth
- Proper description of Indigoidine Production
- Toxicity of Indigoidine synthesis for bacteria
- Optimized production rates
- Identifiability analysis
- ...
Abstract
...
Introduction
Based on coupled ordinary differential equations (ODEs).
Mathematical modelling allows for
Intro ctd.
Results
The ODE system determining the time evolution of the dynamical variables is given by the following four equations: $$ \mathrm{d}\mathrm{[Bac]}/\mathrm{d}t = -\frac{\mathrm{[Bac]} \cdot \left(\mathrm{[Bac]} - \mathrm{Bacmax\_native\_svp}\right) \cdot \left(\mathrm{beta\_native\_svp} - \mathrm{[Ind]} \cdot \mathrm{ki\_native\_svp}\right)}{\mathrm{Bacmax\_native\_svp}} $$ $$\mathrm{d}\mathrm{[Glu]}/\mathrm{d}t = - \mathrm{[Bac]} \cdot \mathrm{[Glu]} \cdot \mathrm{ksyn\_native\_svp} $$ $$\mathrm{d}\mathrm{[cGlu]}/\mathrm{d}t = - \mathrm{kdim\_native\_svp} \cdot {\mathrm{[cGlu]}}^2 - \mathrm{kdegg\_native\_svp} \cdot \mathrm{[cGlu]} + \mathrm{[Bac]} \cdot \mathrm{[Glu]} \cdot \mathrm{ksyn\_native\_svp} $$ $$\mathrm{d}\mathrm{[Ind]}/\mathrm{d}t = {\mathrm{[cGlu]}}^2 \cdot \mathrm{kdim\_native\_svp} - \mathrm{[Ind]} \cdot \mathrm{kdegi\_native\_svp} $$
Results 1
Results 1.
Discussion
Discussion.
References.