Team:Heidelberg/Modelling/Ind Production
From 2013.igem.org
Line 110: | Line 110: | ||
<figcaption style="width:200px;"><b>Fig. 1</b> Network graph.</figcaption> | <figcaption style="width:200px;"><b>Fig. 1</b> Network graph.</figcaption> | ||
- | <img style="width: | + | <img style="width:400px; margin-bottom:10px; padding:1%;border-style:solid;border-width:1px;border-radius: 5px;" src="https://static.igem.org/mediawiki/2013/9/9d/Y_native.png" ></img> |
<figcaption style="width:200px;"><b>Fig. 2</b> Experimental data represented by asterisks, model trajectories represented by lines, 95% confidence interval represented by shaded region.</figcaption> | <figcaption style="width:200px;"><b>Fig. 2</b> Experimental data represented by asterisks, model trajectories represented by lines, 95% confidence interval represented by shaded region.</figcaption> | ||
- | <img style="width: | + | <img style="width:400px; margin-bottom:10px; padding:1%;border-style:solid;border-width:1px;border-radius: 5px;" src="https://static.igem.org/mediawiki/2013/1/1e/X_native.png" ></img> |
<figcaption style="width:200px;"><b>Fig. 3</b> Internal states.</figcaption> | <figcaption style="width:200px;"><b>Fig. 3</b> Internal states.</figcaption> | ||
Line 119: | Line 119: | ||
<figcaption style="width:200px;"><b>Fig. 4</b> Robust parameter estimation.</figcaption> | <figcaption style="width:200px;"><b>Fig. 4</b> Robust parameter estimation.</figcaption> | ||
- | <img style="width: | + | <img style="width:400px; margin-bottom:10px; padding:1%;border-style:solid;border-width:1px;border-radius: 5px;" src="https://static.igem.org/mediawiki/2013/1/13/Ple_native.png" ></img> |
<figcaption style="width:200px;"><b>Fig. 5</b> Identifiability analysis.</figcaption> | <figcaption style="width:200px;"><b>Fig. 5</b> Identifiability analysis.</figcaption> | ||
</a> | </a> |
Revision as of 21:32, 26 October 2013
Indigoidine Production. Quantitative dynamic modeling.
Highlights
- Suitable model for bacterial growth
- Proper description of Indigoidine Production
- Toxicity of Indigoidine synthesis for bacteria
- Optimized production rates
- Identifiability analysis
- ...
Abstract
...
Introduction
Based on coupled ordinary differential equations (ODEs).
Mathematical modelling allows for
Intro ctd.
Results
The ODE system determining the time evolution of the dynamical variables is given by the following four equations: $$ \mathrm{d}\mathrm{[Bac]}/\mathrm{d}t = -\frac{\mathrm{[Bac]} \cdot \left(\mathrm{[Bac]} - \mathrm{Bacmax\_native\_svp}\right) \cdot \left(\mathrm{beta\_native\_svp} - \mathrm{[Ind]} \cdot \mathrm{ki\_native\_svp}\right)}{\mathrm{Bacmax\_native\_svp}} $$ $$\mathrm{d}\mathrm{[Glu]}/\mathrm{d}t = - \mathrm{[Bac]} \cdot \mathrm{[Glu]} \cdot \mathrm{ksyn\_native\_svp} $$ $$\mathrm{d}\mathrm{[cGlu]}/\mathrm{d}t = - \mathrm{kdim\_native\_svp} \cdot {\mathrm{[cGlu]}}^2 - \mathrm{kdegg\_native\_svp} \cdot \mathrm{[cGlu]} + \mathrm{[Bac]} \cdot \mathrm{[Glu]} \cdot \mathrm{ksyn\_native\_svp} $$ $$\mathrm{d}\mathrm{[Ind]}/\mathrm{d}t = {\mathrm{[cGlu]}}^2 \cdot \mathrm{kdim\_native\_svp} - \mathrm{[Ind]} \cdot \mathrm{kdegi\_native\_svp} $$
Results 1
Results 1.
Discussion
Discussion.
References.