Team:Heidelberg/Modelling/Ind Production

From 2013.igem.org

(Difference between revisions)
Line 151: Line 151:
Discussion.
Discussion.
</p>
</p>
-
                <div class="col-sm-12 jumbotron">
+
 
-
                    <div class="references" style="font-size:10px">
+
-
References.
+
-
</div>
+
-
        </div>
+
-
<html>
+
-
<script type="text/javascript">
+
-
  $(document).ready(function() {
+
-
    $(".fancybox.fancyGraphical").fancybox({
+
-
                helpers : {
+
-
      title : {
+
-
        type: 'outside'
+
-
      }
+
-
                }
+
-
              });
+
-
                $(".fancybox.fancyFigure").fancybox({
+
-
        prevEffect  : 'none',
+
-
    nextEffect  : 'none',
+
-
    helpers : {
+
-
      title : {
+
-
        type: 'outside'
+
-
      },
+
-
      thumbs  : {
+
-
        width : 50,
+
-
        height  : 50
+
-
      }
+
-
    }
+
-
  });
+
-
  });
+
-
</script>
+
-
</html>
+
{{:Team:Heidelberg/Templates/Footer-Nav}}
{{:Team:Heidelberg/Templates/Footer-Nav}}
{{:Team:Heidelberg/Templates/Fancybox}}
{{:Team:Heidelberg/Templates/Fancybox}}

Revision as of 21:33, 26 October 2013

Indigoidine Production. Quantitative dynamic modeling.

Highlights

  • Suitable model for bacterial growth
  • Proper description of Indigoidine Production
  • Toxicity of Indigoidine synthesis for bacteria
  • Optimized production rates
  • Identifiability analysis
  • ...

Abstract

...

Introduction

Based on coupled ordinary differential equations (ODEs). Mathematical modelling allows for Identifiability analysis

Fig. 1 Network graph.
Fig. 2 Experimental data represented by asterisks, model trajectories represented by lines, 95% confidence interval represented by shaded region.
Fig. 3 Internal states.
Fig. 4 Robust parameter estimation.
Fig. 5 Identifiability analysis.

Intro ctd.

Results

The ODE system determining the time evolution of the dynamical variables is given by the following four equations: $$ \mathrm{d}\mathrm{[Bac]}/\mathrm{d}t = -\frac{\mathrm{[Bac]} \cdot \left(\mathrm{[Bac]} - \mathrm{Bacmax\_native\_svp}\right) \cdot \left(\mathrm{beta\_native\_svp} - \mathrm{[Ind]} \cdot \mathrm{ki\_native\_svp}\right)}{\mathrm{Bacmax\_native\_svp}} $$ $$\mathrm{d}\mathrm{[Glu]}/\mathrm{d}t = - \mathrm{[Bac]} \cdot \mathrm{[Glu]} \cdot \mathrm{ksyn\_native\_svp} $$ $$\mathrm{d}\mathrm{[cGlu]}/\mathrm{d}t = - \mathrm{kdim\_native\_svp} \cdot {\mathrm{[cGlu]}}^2 - \mathrm{kdegg\_native\_svp} \cdot \mathrm{[cGlu]} + \mathrm{[Bac]} \cdot \mathrm{[Glu]} \cdot \mathrm{ksyn\_native\_svp} $$ $$\mathrm{d}\mathrm{[Ind]}/\mathrm{d}t = {\mathrm{[cGlu]}}^2 \cdot \mathrm{kdim\_native\_svp} - \mathrm{[Ind]} \cdot \mathrm{kdegi\_native\_svp} $$

Results 1

Results 1.

Discussion

Discussion.


Thanks to