Team:Heidelberg/Modelling/Gold Recovery
From 2013.igem.org
chemistry
$$ HNO_3 \: + \: 3 \: HCl \: \to \: NOCl \: + \: 2 \: Cl_{nasc.} \: + 2 \: H_2O $$ $$ 2 \: Au \: + \: 2 \: NOCl \: + \: 3 \: Cl_2 \: + \: 2 \: HNO_3 \: \to \: 2 \: HAuCl_4 \: + \: 4 \: NO_2 $$ $$ Fe \: + \: 4 \: HNO_3 \: \to \: Fe(NO_3)_3 \: + \: 2 \: H_2O \: + \: NO $$ $$ Fe(NO_3)_3 \cdot 9H_2O \: + \: 3 \: NaOH \: \to \: FeOOH \downarrow \: + \: 3 \: NaNO_3 \: + \: 10 \: H_2O $$Introduction
Non ribosomal peptide synthetases are used by natural organisms in order to solve many different problems and gain evolutionary advantages. This utility has also been recognized at the industrial scale with pharmaceutical companies such as Cubist producing antibiotics (e.g. Daptomycin [Ref]) which are non-ribosomal peptides. Still, we were also fascinated by applications of our systems to the environment. Therefore, we conducted a lot of experiments with delftibactin, the molecule that can selectively bind and recover gold from solutions, and the corresponding NRPS genes. Concurrently with these experiments, as an additional proof of principle for the applicability of NRPS to the problem of electronic waste, we tried to use theoretical considerations and metabolic modeling to show the feasibility of our idea.
In particular, the feasibility of utilizing delftibactin for recycling at industrial scale was assessed by the next steps: A genome scale metabolic model of recombinant E.coli cells capable of producing Delftibactin was constructed and then simulated using constraint-based modeling (Flux Balance Analysis). The optimal production envelope was then used for further simulations of the bacterial growth and delftibactin production in a bioreactor, which was then used in order to estimate the cost for the produced delftibactin. Finally, a workflow for isolation of gold from printed circuit boards, which are leached using aqua regia, is suggested and then compared in regard to financial impact to state of the art methods (cite 2 papers from 2009) for gold recovery, which also utilize the same leaching agent (aqua regia).
Delftibactin Production
To model Delftibactin production, we
Explanation of constraints based modeling
Constraint based modeling is a computational method to mechanistically simulate complex metabolic networks
Interestingly, the constraints define polytopes in a high-dimensional space, which is usually called the flux space. One can easily prove that polytopes are convex sets, which is a property that makes them amenable to several manipulations (REF+EXAMPLES). These polytopes are usually represented as follows:
$$ S\cdot v = 0 $$ $$ v_{min} \leq v \leq v_{max} $$
where $S$ is the stoichiometric matrix, $v_{min},v_{max}$ describe lower and upper bounds of the metabolic fluxes.
As this polytope is high dimensional, methods have to be applied in order to determine probable flux distributions or to compare flux spaces corresponding to different cells or states. The usual procedure describes the maximization of a linear objective function $c^T\ v$ subjected to the constraints defined in ~\ref{eq:steadyState}. This concept is based on the assumption that biological systems have evolved in order to maximize a certain objective for example the growth rate of the organism. To convert this principle into linear programming the following algorithm is formulated: Maximize $c^T\ v$ subject to the above constraints. This method is usually called Flux Balance Analysis (FBA) and the linear objective maximized is in most cases the so-called biomass reaction, though it can also take other forms, such as ethanol production or ATP maximization, depending on the context.
Although linear programs can be solved quickly with an optimal objective function value returned, there can exist many alternate optimal solutions, of which available solvers return only one. In order to capture this alternate solution space, flux variability analysis (FVA) can be employed
Most of the constraint based modeling approaches have also been implemented in diverse software packages. Here, the the very popular COBRA toolbox for Matlab
Metabolic model of Delftibactin producing E.coli
As explained in the previous section, to simulate the metabolism of a cell using flux balance analysis, the stoichiometric representation of the underlying metabolic network has to be available. As the biochemistry of E.coli has been extensively studied, there also exist comprehensive metabolic reconstructions. Here we used the iAF1260 model, which captures 2077 reactions of K-12 MG1655 E.coli corresponding to 1260 genes. Of course, wild type E.coli is not able to produce Delftibactin. Thus the reactions corresponding to the gene products we are trying to introduce into our TOP10 cells (LINK delftibactin project) responsible for the production of this non ribosomal peptide, were appended to the aforementioned model.
In particular, wild type E.coli can produce all the monomers necessary for Delftibactin production, with the exception of methylmalonyl-CoA, which is required for the PKS part of the synthetase. Thus, a reaction converting propanoyl-CoA to methylmalonyl-CoA with the following stoichiometry was added:
1 ppcoa[c] + 1 atp[c] + 1 hco3[c] -> 1 mmcoa-S[c] + 1 pi[c] + 1 adp[c] + 1 h[c]
1 ppcoa[c] + 1 atp[c] + 1 hco3[c] -> 1 mmcoa-S[c] + 1 pi[c] + 1 adp[c] + 1 h[c]
Subsequently, the main delftibactin production reaction was added. The stoichiometry is governed by the amino acids monomers which are combined under usage of 1 ATP each and the Claisen condensation of methyl-malonyl CoA. This core reaction of the synthetase was accompanied with the subsequent modification enzymes [macgarvey2013] which are also necessary for the functional activity of Delftibactin. These comprise the aspartic acid dioxygenase (coded by the gene DelD), the N5-hydroxyornithine formyltransferase (DelP) and finally the lysine/ornithine N-monooxygenase (DelL). The stoichiometry of this lumped reaction is the following:
1 ala-L[c] + 2 ser-L[c] + 1 asp-L[c] + 2 thr-L[c] + 1 gly[c] + 2 orn[c] + 1 arg-L[c] + 10 atp[c] + 1 akg[c] + 2 o2[c] + 1 10fthf[c] + 1 nadph[c] + 1 h[c] + 1 mmcoa-S[c] -> 10 amp[c] + 20 pi[c] + 1 co2[c] + 1 succ[c] + 1 thf[c] + 1 nadp[c] + 1 h2o[c] + 1 coa[c] + 1 co2[c] + 1 delftibactin
In regards to constraints of the metabolic model, it was assumed that E.coli grows on minimal glucose medium under aerobic conditions. The maximal glucose uptake rate was set to 10.5 $\frac{mmol}{g_{dw}h}$ and the oxygen uptake rate to 15 $\frac{mmol}{g_{dw}h}$ and the ATP maintenance flux (which represents the non-growth associated energy required for maintaining the biological processes of the cells) was set to 7.6 $\frac{mmol}{g_{dw}h}$. Those fluxes have been previously measured for aerobically growing E.coli
As we were interested in the optimum case, that is the maximal possible delftibactin production based on the stoichiometrically imposed constraints, we initially used FBA with delftibactin production as the objective function. The resulting flux was ..., but the corresponding specific growth rate was 0. Thus, in the next step, using FBA again, the maximum possible specific growth rate was determined and then the interval was split into .. For each of these intervals, the growth rate was fixed and FBA was ran again. The resulting plot -also called the production envelope- shows the optimal delftibactin production rate as a function of the specific growth rate (FIGURE). As could have been expected, the delftibactin synthesis drains a lot of resources which are also necessary for growth (ATP, amino acids) and thus these two objectives represent a natural trade-off.
In addition, as in bioreactor processes, as we reasoned that Oxygen consumption could be a limiting factor, for each of the previously sampled points, flux variability analysis was conducted in order to find the minimal oxygen flux supporting a particular growth rate and the corresponding optimal delftibactin production (figure ...). All resulting fluxes were higher than the experimentally measured maximal oxygen uptake rate (15 $\frac{mmol}{g_{dw}h}$) and consequently the oxygen uptake parameter couldn't be further optimized.
graph of maximal delftibactin production VS growth rate (vlt auch graph of oxygen consumption vS growth rate bei optimal delftibactin production?)
Bioreactor Simulations
The next step in the modeling was the estimation of the cost of delftibactin by use of a fed batch process. A flux balance analysis model only gives estimate for steady-state fluxes and does not capture dynamic behaviours, such as fermentation processes. This is solved by dynamic FBA (dFBA) frameworks
A fed-batch process with an exponential feeding strategy, in which the glucose concentration, remains constant and delftibactin is produced, was modelled by dFBA using the DyMMM (Dynamic Multispecies Metabolic Modeling framework ) MATLAB framework
$$ \frac{dV}{dt}=\left\{\begin{matrix}\frac{v_{glc}XV}{S_{glc}-S_{glc}^{feed}}, if \ V < V_{max} \\ 0, if \ V \geq V_{max} \end{matrix}\right.$$ $$ \frac{dX}{dt}=\mu X $$ $$ \frac{dS_{glc}}{dt} = v_{glc}X + \frac{dV}{dt}\frac{S_{glc}^{feed}-S_{glc}}{V} $$ $$ \frac{dS_{delftibactin}}{dt} = v_{delftibactin}X $$ $$ |v_{glc}| \leq |v_{glc}^{max}| \frac{S_{glc}}{S_{glc} + K_m} $$
(figure : cost/productivity/yield vs different parameters)
where X [g/L] is the E.coli biomass, V, Vmax [L] are the currently and maximally filled volume of the bioreactor, $S_{glc}$, $S_{glc}^{feed}$, $S_{delftibactin}$ [mmol/L] are the concentrations of glucose and delftibactin in the reactor or the feed, $K_m$ [mmol/L] the Michaelis-Menten constant for glucose uptake, $\mu$ [1/h] the growth rate of the bacteria and finally $v_{glc},v_{delftibactin}$ $\frac{mmol{g_{dw}h}$ the flux rates of the corresponding reactions with $v_{glc}^{max}$ being the maximal possible flux.
The starting conditions were set to a volume of 1 L, a biomass of 0.1 g/L and a glucose concentration of 20 mmol/L, as in
Simulations with those conditions was performed for 150 equally spaced growth rate values on the production envelope (Fig. x)...
- figure with example concentration change or biomass change for 1 point
- figure with titer, volumetric productivity as a function of simulated points etc
Cost
The ultimate goal of the aforementioned simulations was the optimistic calculation of the cost required for production of delftibactin. Thus, for each of the simulated points, we calculated the costs by starting with the following assumptions:
- The cost of the growth medium of the E.coli is equal to the cost of glucose spent. Glucose costs 0.13$/mol (us department link), which is x euros/mol.
- The operation of the 10 L bioreactor requires 1 full time technician with a wage of 2000 euros per month.
- After finishing the operation of the bioreactor, the next cycle can immediately start.
- The power supply of the bioreactor is equal to 2.5 kW (in Chmiel reference described for a 30 L bioreactor). This corresponds to a cost of ...
- Delftibactin has been secreted to the supernatant and it does not have to be purified in order to selectively precipitate gold, as shown in our experiments (link). but h2o2 has to be used.
In particular, let $n_{delftibactin}$ [mol] denote the number of delftibactin mol produced, $n_{glc}$ [mol] the glucose consumed and $t_f$ [h] the time at which the fermentation ends. All of these values can be can be easily calculated based on the results of the previous simulations.
$$ n_{delftibactin} = S_{delftibactin}V_f $$ $$ n_{glc} = S_{glc}^{start}V_0 + S_{glc}^{feed}(V_f-V_0) $$
and $t_f$ is just the time after which $\frac{dS_{delftibactin}}{dt} = 0 $.
Now also let
$P_{glc}$ [euros/mol glucose] be the price of glucose and p_{reactor}, the cost of operating the reactor per time (equal to the wage for 1 technician per time and the electricity cost). Then the final cost $P_{delftibactin}$ per mol of delftibactin is equal to:
$$ P_{delftibactin} = \frac{n_{glc}P_{glc} + t_fp_{reactor}}{n_{delfti}} $$
Figure: Price delftibactin as function of e.coli specific growth rate... Figure:
Suggested Workflow
General overview
Having estimated the cost for delftibactin production, it is now possible to estimate the cost for recovery of gold from printer circuit boards. In particular, our proposed approach is very similar to the one followed in the laboratory experiments: The electronic chip is dissolved in aqua regia, the resulting solution is neutralized with NaOH and then delftibactin is added in a 2:1 molar ratio to the dissolved gold. This ratio was chosen, because...
Our proposed method is compared to a state of the art publication, which builds upon several patents
The two compared processes are summarized in Fig.
cost estimation
Discussion
Constraint-based modeling
One of the main assumptions that went into the FBA based modeling was that the E.coli bacteria have been engineered in such a way, so as to maximize the delftibactin production rate. In fact, the simulated points lie on the pareto frontier (product envelope) and they place an upper bound to what is theoretically possible, simply due to stoichiometric considerations.
In order to get an insight to the resulting numbers, it could be useful to compare with two other recent approaches that modelled NRPS/PKS systems in a similar way. Huang et al.
The same group subsequently also did COBRA modeling and experimentally measured production of FK506 (a 23-membered polyketide produced by PKS/NRPS) by Streptomyces tsukubaensis. The experimental production rate was 1.61 $\frac{\mu mol}{g_{dw}h}$ for a C6 uptake rate of 3.47 $\frac{mmol}{g_{dw}h} and a growth rate of 0.0495 1/h.
Bioreactor simulation
There's a lot of different methods , with the ones contrasted here not necessarily being the most used industrially... Still these can
Proposed workflow
In order to recover metals from electronic waste, several different methods have been developed and are industrially utilized. In some of the common processes, the trash is incinerates, thus releasing toxic dioxins
Another commonly used method is hydrometallurgical processing, in which diverse chemicals are used for the leaching of the trash in order to dissolve the metals in aqueous solutions. Traditionally, cyanide has been used for this, but due to environmental accidents, it is increasingly avoid [REFERENCE]. Still, hydrometallurgical is often considered to be highly selective and have a good recovery.
Aqua regia used in our proposed pipeline also falls into the category of hydrometallurgical processing. Note that aqua regia is not necessarily the best choice of leaching agent to be used at industrial scale, for example the high cost of the necessary equipment (special stainless steel)
It is important to note again that the method proposed here only requires the existence of Gold ions in a fairly neutral solution. Thus, new developments in ecologically friendly leaching agents or even bioleaching agents could be immediately coupled to the delftibactin process. In fact, it could easily replace the gold extraction step in most used in most industrially used processes in a plug-and-play fashion, whereas the chemical isolation steps would have to be extensively readjusted to the new conditions.
Finally, it has to be mentioned that efficient industrial processes consist of closed-loop systems
Feasibility and benefits of our proposed method
Outlook
- engineering e.g. using NRPSDesigner of molecules similar to delftibactin with specificity for other metals
- pipeline possible to completely recover electronic waste using NRPS as well as previous igem projects (e.g. plastic recycling projects)...