Team:Heidelberg/Tour

From 2013.igem.org

(Difference between revisions)
m
Line 75: Line 75:
                         #panel-5 { border-style:solid; border-color:#999999; border-width:2px; background-image:url('https://static.igem.org/mediawiki/2013/3/3a/Heidelberg_soft.png');background-repeat:no-repeat; }
                         #panel-5 { border-style:solid; border-color:#999999; border-width:2px; background-image:url('https://static.igem.org/mediawiki/2013/3/3a/Heidelberg_soft.png');background-repeat:no-repeat; }
-
                         #panel-6 { border-style:solid; border-color:#999999; border-width:2px; background-image:url('https://static.igem.org/mediawiki/2013/5/51/Heidelberg_odel.png');background-repeat:no-repeat;background-size:150px; }
+
                         #panel-6 { border-style:solid; border-color:#999999; border-width:2px; background-image:url('https://static.igem.org/mediawiki/2013/5/51/Heidelberg_odel.png');background-repeat:no-repeat;background-size:428px; }
                         #panel-7 { border-style:solid; border-color:#999999; border-width:2px; background-image:url('https://static.igem.org/mediawiki/2013/6/6d/Heidelberg_human.png');background-repeat:no-repeat;background-size:70px; }
                         #panel-7 { border-style:solid; border-color:#999999; border-width:2px; background-image:url('https://static.igem.org/mediawiki/2013/6/6d/Heidelberg_human.png');background-repeat:no-repeat;background-size:70px; }
                         #panel-8 { border-style:solid; border-color:#999999; border-width:2px; background-image:url('https://static.igem.org/mediawiki/2013/e/e9/Heidelberg_results.png');background-repeat:no-repeat;background-size:70px; }
                         #panel-8 { border-style:solid; border-color:#999999; border-width:2px; background-image:url('https://static.igem.org/mediawiki/2013/e/e9/Heidelberg_results.png');background-repeat:no-repeat;background-size:70px; }

Revision as of 13:21, 28 October 2013

Take the Tour! Have a quick look at our Project.

Overview

We aim to open up the usage of NRPS to the iGEM Community. Therefore:

  • We prove that Non-Ribosomal Peptide Synthetase modules behave in a modular manner and can be shuffled
  • We develop a method for easy Non-Ribosomal Peptide-detection
  • We use a Non-Ribosomal Peptide for the recycling of gold from electronic waste
  • We implement a software which enables everyone to design synthetic Non-Ribosomal Peptides

Recycling of Gold from Electronic Waste Using the NRP Delftibactin

Due to the fast turn-over of today’s high-tech equipment, millions of tons of electronic waste accumulate each year. It contains tons of gold which is very valuable to the society, not only because of its use in jewelry but also for medical applications. The main approach nowadays is to recycle gold by electrolysis which is highly inefficient and expensive, preventing most of the gold from being recovered. In our project we worked on finding a more efficient and environmentally friendly method to recover this precious metal:

  • We managed to recover gold from electronic waste using delftibactin, a NRP produced by Delftia acidovorans
  • We managed to clone all genes needed for delftibactin production into E. coli
  • We managed to recombinantly express the NRPS responsible for delftibactin production in E. coli

Synthetic Peptides

This text show only be displayed under modules.

Indigoidine-Tag

This text show only be displayed under tag.

Software

We have implemented a software called "NRPSDesigner", which allows the user to enter a desired peptide consisting of currently over 50 amino acids he or she can choose from our dynamical database. The software calculates a NRPS domain sequence, composed of domains from different species, which is capable of producing the desired non-ribosomal peptide. Via the integrated Software "Gibthon", a former iGEM project, a Gibson cloning strategy is designed. In order to make sure our tool can be used beyond this years iGEM competition we furthermore implemented the possibility of adding new domains to our database by entering a DNA sequence. On the basis of this DNA sequence a domain prediction is carried out, which is based on antismash2. This de facto enables everyone to design his or her non-ribosomal peptide of interest!

Modeling the Feasibility of Gold Recycling with Delftibactin

In oder to find out whether the use of delftibactin would be feasible for industrial-scale recycling of gold from electronic waste we designed a model for the cost development of such a aproach.

Modeling the Indigoidine Production

This text show only be displayed under model.

Human Practice

The aim of science and synthetic biology in particular is to improve lives by solving problems. We as researchers (-to-be) are therefore working for society. Yet, we can only offer solutions, which have to be approved and applied by the public.

We as iGEM Team Heidelberg have therefore put great effort in communicating with many groups within society to open minds, broaden horizons as well as minimize prejudices and concerns:

  • Involving experts
  • Engaging the broad public
  • Getting inspired by artists
  • Intruiging the next generation of scientists

And finally bringing them all together to an open talk evening addressing the question "On the Way to a Synthetic Future?"

Results

Thanks to