Team:Heidelberg/Project/Tag-Optimization
From 2013.igem.org
Tag-Optimization.Engineering indC by Domain Exchanges.
Highlights
Abstract
Non-ribosomal peptide synthetases (NRPS) offer a unique opportunity to spin around their inherent logical assembly and observe if their functionality is preserved or even improved.
Following this idea, we investigate the interchangeability of NRPS domains and the possibility to tune their efficiency at the example of indC from Photorhabdus luminescens, the NRPS module used for the Indigoidine-Tag. The native NRPS domains have been replaced with domains from other bacterial organisms and fully synthetic domains. To quantify the NRPS efficiency we established an indigoidine assay based on OD measurement of the blue-colored pigment. Interestingly, we find that our data points out that one of our engineered indC variants is more efficient in producing indigoidine than the native enzyme. Furthermore, we introduce HiCT - High throughput protocols for circular polymerase extension Cloning and Transformation - a new standard for the assembly of combinatorial gene libraries (RFC 99).
Introduction
Most modules of non-ribosomal peptide synthetase (NRPS) pathways consist of three domain types: condensation, adenylation and thiolation domain (see Figure 1a), also called peptidyl-carrier-protein domain (PCP)-domain (reviewed in Fischbach 2006)). During the process of non-ribisomal peptide (NRP) synthesis, a new amino acid is first adenylated by the A-domain and then bound to the T-domain via a thioester bond. The C-domain catalyzes the condensation of the substrate - which is bound to the T-domain of the previous module - and the amino acid of the next module.
The T-domain itself shows no substrate specificity but acts as a carrier domain, which keeps the peptide attached to the NRPS module complex. The core element of every T-domain is a conserved 4’-phosphopanthetheinylated (4’-PPT) serine. The 4’-PPT residue is added by a 4’-Phosphopanthetheinyl-transferase (PPTase), which converts the NRPS apo-enzyme to its active holo-form (see Figure 1b).
a) Basic structure of NRPS pathways
Typically, a NRPS is composed of 1 to about 10 single modules, of which each consists of a
C-domain (condensation domain), an A-domain (adenylation domain) and a T-domain (thiolation
domain). Moreover, the initial module lacks the C-domain and the last module of a pathway has
an additional TE-domain (thioesterase domain), which cleaves the synthesized nonribosomal
peptide from the last T-domain.
b) Activation of NRPS modules by 4'-Phosphopanthetheinylation of the T-domain.
Every NRPS module has to be activated by a 4'-Phosphopanthetheinyl-transferase (PPTase).
which transfers the 4'-Phosphopanthetheinyl moiety of Coenzyme A to a conserved serine
residue in the T-domain.
Besides these fundamental domains (C-domain, A-domain and T-domain), some NRPS modules incorporate additional domains enlarging the amount of potential catalytic reactions, such as cyclization, epimerization or oxidation of the amino acid (Marahiel 2006).
For example, a single module of P. luminescens laumondii TT01 (DSM15139) contains an internal oxidation domain (Ox-domain) in its A-domain and a special TE-domain (Figure 2a). This enzyme first adenylates L-glutamine (A-domain), which is then attached to the T-domain. The TE-domain cleaves and catalyzes the cyclization of the substrate, which is further oxidized by the Ox-domain. The oxidation of two cyclic glutamines results in the formation of an insoluble small molecule (Figure 2b)(Brachmann 2012).
The indigoidine synthetase indC from P. luminescens consists of an adenylation domain with an internal oxidation domain, a thiolation domain and a thioesterase domain. We replaced the indC T-domain with T-domains of other NRPS modules (one of which is the indigoidine synthetase bpsA from S. lavendulae) and seven synthetic T-domains, which were customized to be introduced to indC, respectively.
Additionally, the selectivity of an NRPS module for specific amino acids could be modified by altering the conserved motif in the active site of the A-domain (Thirlway 2012). Furthermore, since the endogenous 4'-Phoshopanthetheinyl-transferase (PPTase) entD from E. coli has been reported to exhibit low efficiency in activating heterologous NRPS pathways, most research in the field of NRPS involves co-expression of another PPTase (Pfeifer 2001, Takahashi 2007).
Results
Expression of Functional Indigoidine Synthetase indC derived from ''P. lumninescens'' in five substrains of ''E. coli''
The open reading frame of the native indigoidine synthetase indC was amplified from genomic DNA of ''P. lumninescens'' and cloned into a plasmid under the control of an lac-inducible promoter. This indC expression cassette was transformed into different substrains of ''E. coli'', namely DH5alpha, MG1655, BAP1, TOP10 and NEB Turbo. All of these host strains were previously transformed with an expression plasmid coding for the PPTase Sfp from ''B. subtilis'', which is commonly used in NRPS studies (Nakano 1992). As depicted in Figure 3a, Sfp is able to activate the T-domain of indC as determined by the blue phenotype of the transformed cells. Except for NEB Turbo cells, all transformed host strains displayed a decellerated growth and significantly smaller colonies on plate when compared to the negative control. The blue phenotype developed late after transformation ranging from first blue colonies after 24 h and taking up to three days for visible poduction of the blue pigment. NEB Turbo showed regular colony growth and developed a strong blue phenotype upon induction with IPTG. As all host strains were able to express the functional indigoidine sythetase IndC, further experiments were only conducted with one ''E. coli'' strain. Due to its simplicity in handling and sufficient expression of the constructs, the substrain TOP10 was chosen.a) Comparison of different E. coli strains examining growth and indigoidine production The figure shows five different strains of E. coli that have been co-transformed with an indC expression plasmid and a sfp expression plasmid. The negative control is E. coli TOP10 without a plasmid. All transformants have been grown on LB agar for 48 hours at room temperature, cells were not induced. One can see that even without induction all strains express the indigoidine synthetase and produce the blue pigment indigoidine. However, the strains BAP1 and NEB Turbo grow faster in the first day, exhibiting a white phenotype (data not shown). Colonies on the plate of E. coli TOP10 are very small and dark blue/ black. Assuming that indigoidine production inhibits cell growth due to its toxicity, we concluded that TOP10 produced the most indigoidine among the strains we tested. We used E. coli TOP10 for the following experiments.
b) Comparison between different PPTases concerning overall indigoidine production The Figure shows ''E. coli'' TOP10 cells co-transformed with indC and four different PPTases (sfp, svp, entD and delC), respectively. The image bottom left shows ''E. coli'' TOP10 cells without additional PPTase and the negative control is TOP10 without a plasmid.
Indigoidine production varies when coexpressed with different PPTases
The expression of indC under activation by the endogenous PPTase entD in ''E. coli'' was sufficient for easy detection of indigoidine production on plates. In order to determine, whether the amount of indigoidine production in the ''E. coli''TOP10 cells is dependent on the quality of the interacting of indC with the PPTase, four PPTase dervied from varying origins were selected and amplified from the genome of the hosts of origin. ''E. coli''TOP10 cells were co-transformed with plasmids coding for the different PPTases and the plasmid containing the expression cassette for indC. As reference for the endogenous PPTase activity served cells only transformed with the indC plasmid. Irrespective of the PPTase, growth of colonies was retarded. Remarkably however, colonies co-transformed with the PPTase plasmid remained of smaller size than the ones only carrying the indC construct. On the other side, indigoidine production was more diffuse in the latter cells with secretion of the blue pigment into the agar (Figure 3b, indC) and only slight blue-greenish coloring of the colonies. The four PPTases additionally introduced into the TOP10 cells were all shown to be functional (blue phenotype of the transformants, Figure 3b), but lead to the retention of most of the indigoidine within the cells. Colonies of cells transformed with thess constructs, were of convex shape and of distinct, dark blue color. Overall, cells carrying an additional PPTase showed increased indigoidine production compared to the cells relying on the endogenous entD.T-Domain Exchanges in IndC Yield Functional Indigoidine Synthetases
The main structurel characteristic of NRPSs is their modular composition on different levels. The indogoidine synthetase indC is a one-module NRPS comprised of the three domains, namely AOxA, T and TE. Since the functionality of this NRPS is detectable by the bare eye, it offers a perfect and simple experimental set-up for proof of principle experiments regarding the interchangeability of domains from different NRPS. Out of the three domains in indC, the T-domain is suppossed to exhibit the least substrate specificity and was thus chosen for first domain shuffling approaches. For the initial definition of T-domain boundaries of indC, we used Pfam, a web-tool which allows -amongst other functions- for the prediction of NRPS's module and domain boundaries (Pfam.sanger.ac.uk. Following the boundary prediction, we choose a two-pronged domain shuffling approach: First, we transferred native T-domains derived from either different host species and/or NRPSs of entirely different function into the indC indigoidine synthetase. Second, we deviced three methods for the generation of synthetic T-domains based on different NRPS libraries generated by BLAST search against either specific subranges of host organisms or restricting the query sequence to be BLASTed (BLAST.ncbi.nlm.nih.gov.) As depicted in Figure 4, both approaches lead principally to fully functional indCs. The synthetic T-domains 1, 3 and 4 showed the same decreased growth and indigoidine production on plates as did the native T-domain derived from ''P. lumninescens''. The colonies obtained after co-transformation with supplementary PPTase plasmid were small in size and of dark blue color. Compared to synthetic T-domain 5, indigoidin production started earlier (approximately after 24-30 hours). In contrast to the synthetic domains 1,3 and 4 which were designed by the consensus method and showed medium to high similarity to the sequence of origin, synthetic domain 5 was generated by the guided random method.We replaced the indC T-domain with both the T-domains of other native NRPS modules (entF, delH, tycC, tycA, bpsA, plu2642 and plu2670) and synthetic T-domains. The figure shows the five modified versions of indC that remain the enzyme function, thus resulting in a blue phenotype of transformed ''E. coli'' TOP10. The cells have been co-transformed with a plasmid containing the respective engineered variant of indC and a second plasmid coding for the PPTase sfp, svp, entD and delC. The figure shows representative results; the total 85 transformation results can be found in the indigoidine notebook, week 17.
Remarkably, even though 39 out of the 62 amino acids of the original T-domain were exchange, the indigoidine synthetase with this T-domain was still functional. Closer analysis of the sequence compared to the original indC T-domain sequence showed, that the characteristics of the amino acid sequence, i. e. for instance polar or charged amino acids, were retained in 72% of the sequence. Also, the GGxS core sequence of the T-domain at which the activation by the PPTas occurs was conserved.
The Efficiency of Engineered NRPS is Improved When Optimal Domain Borders Are Applied
Multiple web-tools exist which offer the prediction of NRPS module and domain boundaries. One of the most common used prediction tools is Pfam which we used as a starting point to determine the best method for defining domain boundaries. Pfam predicted large linker structures between the end of the A and the beginning of the T-domain (compare Figure 5, T-boundaries from "B" to "2"). Using these domain boundaries for the native T-domains did only yield one functional native T-domain (Figure 4: plu2642). We tried to improve this yield by defining new T-domain boundaries based on the predictions of Pfam and multiple sequence alignments (MSA) with the respective homology libraries at the predicted linker regions. Boundaries were set closer to the preceeding A-domain, at regions were less sequence conservation was observed. Figure 5 shows the indigoidine production after insertion of native T-domains with revised boundaries. T-domain boundary combinations A1, A2 and C1 yielded functional T-domains. As the indigoidine production and cell growth was best for the T-domains created with boundary combination A2, this boundary design was used for all subsequent cloning strategies.a) Definition of different domain border combinations for T-domain exchanges The figure shows a sequence alignment of the indC and bpsA amino acid sequences. The alignment was created using clustalO (http://www.ebi.ac.uk/Tools/msa/clustalo/) with standard parameters. The lines marked A, B and C reflect the borders we used between the A- and the T-domain, whereas those marked, 1, 2, 3 and 4 reflect the borders between the T- and the TE-domain. In total we tried all twelve combinations of a domain border {A, B, C} and a domain border {1, 2, 3, 4}, replacing the sequence inbetween with the respective part of bpsA.
b) E. coli TOP10 co-transformed with modified versions of indC and the PPTase sfp The co-tranformation of the modified indC-(bpsA-T) plasmids described above with a second plasmid coding for the PPTase Sfp shows that only three domain border combinations can be used for exchanging the indC T-domain with the T-domain of bpsA. These are the combinations A1, A2 and C1. We applied combination A2 for further T-domain exchanges.
Figure 6 depicts the success of this boundary desgin as two additional native T-domains derived from delH4 and bpsA (indigoidine synthetase) led to functional indCs and the production of indigoidine. In addition, the native T-domain from plu2642 which was already shown to be functional(compare Figure 3b) showed faster and increased indigoidine production (deep blue agar plate, lower right panel on Figure 6). The results obtained from this experiments proofed two concepts: First, domain shuffling is possible across different species as the T-domains of delH4 and bpsA were derived from D. acidovorans and S. lavendulae lavendulae, respectively and were functional in E. coli. Also, shuffling of domains from modules of different substrate specificity has been proofen herein. Second, manually adjusting the boundaries predicted by Pfam based on MSA is a functional method to predict functional T-domain boundaries.
PPTase and T-domain Interaction Strongly Influence the Yield of Indigoidine Production
As the previous experiments of shuffled T-domains and different combinations of PPTAses showed, there are substantial differences in cell growth and indigoidine production when observed on plates. However, this observations were always of qualitative nature and did not give any insight into quantitative differences. We approached the quantification of indigoidine production in a time-resolved and highly-combinatorial manner: plasmids coding for indC containing all synthetic (4) and native T-domains (3) proven functional by the previous assays were co-transformed with the four functional PPTases. The indigoidine production over time (30 hours) was measured at its absorption maximum of 590 nm and corrected for the contribution of the cellular components in the medium as described in the methods. As Figure 7 shows, synthetic T-domains in combination with different PPTases lead to distinct differneces in indogoidin production.The absorption spectrum of liquid cultures expressing engineered variants of the indC indigoidine synthetase were measured for 30 hours. The graphs show the OD590 of indigoidine in E. coli liquid cultures over time. The absorption of the cell suspension has been subtracted (see OD Measurement in the Methods section). The left diagram shows the indigoidine production over time of a liquid culture expressing an engineered indigoidine synthetase with the synthetic T-domain #1 (synT1) and a PPTase, whereas each graph refers to a specific PPTase coexpressed. The diagram on the right shows the corresponding data for the indigoidine synthetase with the synthetic T-domain #3 (synT3).
The indigoidine production correlates to the combination of a T-domain with a respective PPTase and the PPTases vary in their ability to activate T-domains. For example, DelC is unable to activate synT 1 but activates synT3, whereas svp activates synT1 but is unable to activate synT3. Note also, that activation of synT3 by EntD results in the highest amount of indigoidine production among all the combinations shown.
As a comparisons between the left and right panel of Figure 7 shows, PPTases working best with one T-domain might not lead to any indigoidine production when used with a indigoidine synthetase containing a different T-domain (Figure 7, pink line, delC). In addition, as distinctly visible in Figure 8, indigoidine production over time is not a strictly monoton function (blue line). After an indigoidin production peak at 16 hours, indigoidine production caused by indC containing the synthetic domain 4 decreases again. The indigoidin production in cells transformed with indC/synthetic T-domain 3 is still increasing.
The absorption spectrum of liquid cultures expressing engineered variants of the indC indigoidine synthetase were measured for 30 hours. The graphs show the OD590 of indigoidine in E. coli liquid cultures over time. The absorption of the cell suspension has been subtracted (see OD Measurement in the Methods section). The red graph relates to an E. coli TOP10 negative control, the green graph depicts the indigoidine production of an indC variant, in which the T-domain has been exchanged with our synthetic T-domain #3, whereas the blue graphs refers to synthetic T-domain #4.
The amount of indigoidine reaches a maximum before it drops again. This is due the instability of indigoidine, which is reduced to its fluorescent leuco-form under the influence of reducing agents, light and high temperature (Takahashi 2007). The local absorption maximum at 590 nm (keto-indigoidine) decreases after 15-25 hours, whereas the absorption maximum at 430 nm (leuco-indigoidine) increases (data not shown). Note that the maximum level of indigoidine differs among the engineered indigoidine synthetases.
Engineered Indigoidine Synthetase is More Efficient than Native Enzyme
E. coli TOP10 cells were co-transformed with engineered variants of the indigoidine synthetase indC and different PPTases. The x-axis depicts four variants of indC, in which the T-domain has been replaced (1: native indC; 2: indC with T-domain from delH4 (D. acidovorans; 3: T-domain from plu2642 (P. luminescens); 4: synthetic T-domain #4 (see Methods section)). The y-axis indicates four different PPTases we used (1: sfp from B. subtilis; 2: svp from S. verticillus; 3: entD from E. coli; 4: delC from D. acidovorans). The color of each field depicts the maximal amount of indigoidine production per cell density by cells expressing the respective indigoidine synthetase and PPTase.
Remarkably, when coexpressed with sfp, the engineered indigoidine synthetase with the T-domain of plu2642 results in higher indigoidine yield compared to the native indC. Note, that the combination of the engineered indigoidine synthetase with the T-domain of plu2642 and entD is most efficient among the combinations shown.
Discussion
Motivated by the establishment of the Indigoidine-Tag, which enables the labelling of nonribosomal peptides, we wanted to further investigate the indigoidine synthetase indC and thus the overall NRPS modularity in order to optimize the functionality of the indigoidine tag. In previous studies, direct T-domain exchanges have not been successful in the context of the indigoidine synthetase BpsA from S. lavendulae (Owen 2012). Furthermore, the endogenous PPTase EntD of E. coli was considered inefficient in the activation of the blue pigment synthetase BpsA (Takahashi 2007). Therefore, most studies in the field of NRPS are done with the PPTase Sfp from B. subtilis (Nakano 1992). The family of 4'-Phosphopantheteinyl-transferases was repoted to vary in substrate specificity and thus some PPTases can only activate specific NRPS module families (Owen 2012). We first investigated the production of indigoidine in five substrains of E. coli: TOP10, MG1655, NEB Turbo, BAP1 and Rosetta, using an expression plasmid coding for the indigoidine synthetase IndC and the PPTase Sfp. Though differring in their growth behaviour, all substrains showed to be capable of producing the blue pigment indigoidine (Figure 3).In our approach, we replaced single domains of the indC indigoidine synthetase module with both respective domains of other NRPS pathways from different organisms and entirely synthetic domains which were created based on multiple sequence alignments of 250 NRPS domains. We also created indC variants, in which different domain borders have been applied for the domain exchange, since setting the correct linker sequence is crucial for the NRPS function. We used NRPS domains from Streptomyces lavendulae lavendulae ATCC11924 (blue pigment synthetase bpsA), Brevibacillus parabrevis (Tyrocidine synthesis cluster), Delftia acidovorans SPH-1 (Delftibactin synthesis cluster), Photorhabdus luminescens laumondii TT01 (plu2670 and plu2642, unknown function) and Escherichia coli MG1655 (entF from enterobactin synthesis cluster), thus creating a library of 58 different engineered indigoidine synthetases.
We co-transformed the 58 indC variants with four different PPTases into E. coli TOP10 cells. We used the PPTases Sfp (Bacillus subtilis str. 168), Svp (Streptomyces verticillus ATCC15003), EntD (Escherichia coli MG1655) and DelC (Delftia acidovorans SPH-1) and screened them on their functionality. This screening is remarkably easy, because functional indigoidine synthetases result in a blue phenotype when being expressed and activated in E. coli cells.
We found, that nine engineered indigoidine synthetases, in which the T-domain was replaced, remained functional in producing indigoidine when co-expressed with specific PPTases. The inserted T-domains include four synthetic T-domains, the T-domain of bpsA with three different domain border combinations and the T-domains of the NRPS modules plu2642 (P. luminescens) and delH (D. acidovorans).
In order to quantify the amount of indigoidine produced by the engineered indigoidine synthetases when co-transformed with different PPTases, we established a quantitative indigoidine assay based on OD measurement using a Tecan infinite M200 plate reader. Notably, one of our engineered IndC constructs showed an indigoidine production even higher compared to the wild-type IndC (T-domain Plu2642; Figure 9). This is particularly remarkably as our results contradict to previous studies of NRPS domains that reported the native T-domain of the indigoidine synthetase BpsA to be absolutely essential for protein function (and therefore not replaceable by other T-domains)(Owen 2012).
In conclusion we were able to demonstrate, that it is indeed possible to replace single Domains from NRPS modules, while preserving or even enhancing its functionality. In addition, we established an approach for the design of synthetic T-domains and proved their functionality by introducing them into the indigoidine synthetase indC scaffold. Moreover, we established a high throughput protocol for circular polymerase extension cloning and transformation (Hi-CT) (BBF RFC 99), which we applied for our domain shuffling approach. In summary, we created a library of 58 engineered indC variants. In addition we perforemd measurement of blue pigement production over time, which gave us novel insights in how NRPS domains should be designed, where the domain borders between different domains in a single NRPS module have to be set and which domains from respective NRPS pathways and bacterial strains can be used, when creating novel engineered NRPS pathways. We implemented our findings into the "NRPS-Designer" Software, so that the underlying algorithm for NRPS design takes into consideration the abovementioned findings (e.g. domain border setting) which are certainly crucial for successful in silico prediction of functional NRPSs. Thereby, our project pioneers the research on high-throughput methods for creation of synthetic NRPS modules composed of user-defined domains.
We believe that our findings will highly contribute to future development of custom NRPSs.
Methods
Table 1: Bacterial strains and genes of interest derived thereof. The indigoidine synthetase bpsA was kindly supplied by the Fussenegger lab at ETH Zurich.Strain | Gene | Function |
---|---|---|
Photorhabdus luminescens laumondii TT01 DSM15139 | indC | Indigoidine synthetase |
Streptomyces lavendulae lavendulae | bpsA | Indigoidine synthetase |
Photorhabdus luminescens laumondii TT01 DSM15139 | ngrA | PPTase |
Escherischia coli BAP1 | sfp | PPTase |
Streptomyces verticillus ATCC15003 | svp | PPTase |
Escherischia coli MG1655 | entD | PPTase |
Delftia acidovorans SPH-1 | delC | PPTase |
Cloning Strategy
We assembled the different indC variants on a chloramphenicol resistance backbone (pSB1C3) with an IPTG-inducable lac-promoter, the ribosome binding site BBa_B0034 and the coding sequence of the respective indC variant. The indC plasmids should be co-transformed with a PPTase construct to get a significant and fast indigoidine production. Therefore, we used a second plasmid backbone carrying a kanamycin resistance (pSB3K3). We assembled five pSB3K3 derived plasmids, each carrying an expression cassette with an IPTG induceable lac-promotor, the BBa_B0029 ribosome binding site and the coding sequence of the respective PPTase (sfp, svp, entD, delC and ngrA; see Table 1). We used E. coli TOP10 for co-transformations of the possible combination of the indC variants (2) and all PPTase plasmids (5).Circular Polymerase Extension Cloning
Circular Polymerase Extension Cloning (CPEC) is a sequence-independent cloning method based on homologous recombination of double-strand DNA overlaps of vector and insert(s) (Quan 2008). It is suitable for the generation of combinatorial, synthetic construct libraries as it allows for multi-fragment assembly in an accurate, efficient and economical manner.We provide instructions (RFC 99) for a rapid and cost efficient cloning and transformation method based on CPEC which allows for the manufacturing of multi-fragment plasmid constructs in a parallelized manner: High Throughput Circular Extension Cloning and Transformation (HiCT) CPEC was performed according to the following protocol: The total mass of DNA used per CPEC reaction varied between 50 to 200 ng. The insert to backbone molar ratio was 3:1 for insert-backbone and 1:1 for insert-insert molar ratio. Conversion from mass concentration of fragments to molar concentration was done using the formula: cM = c*10^6/(n*660), where c is the measured oligonucleotide concentration [ng/µl], n is the number of dinucleotides of the fragment and cM is the resulting concentration [nM]. The final reaction volume was adjusted to 6 µl with polymerase master mix (Phusion® High-Fidelity PCR Master Mix with HF Buffer, NEB #M0531S/L). The CPEC reaction was carried out under the following conditions:
- initial denaturation at 98°C for 30 s
- 5 cycles with:
- denaturation step at 98°C for 5 s.
- annealing step at 53°C for 15 s
- elongation/filling up step at 72°C for 20 s/kbp of longest fragment.
- final extension at 72°C for three times the calculated elongation time.
- (Optional: Hold at 12°C )
After CPEC, 5 µl of of the reaction mixture were used for transformation. The remaining volume was used for quality check on a gel with small pockets (10 to 20 µl in volume). The following primers were used for all CPEC experiments into standard BioBrick backbones: BBa_J04450_stem_loop_fw, Bba_J04450_B0034-RBS_ATG_rv, Bba_J04450_B0029-RBS_ATG_rv. The reverse primers (rv) differ in the ribosomal binding sites they introduce: Bba_J04450_B0034-RBS_ATG_rv contains the ribosomal binding site used in J04450, Bba_J04450_B0029-RBS_ATG_rv introduces the ribosomal binding site B0029 which is of weaker than B0034.
Generation of ccdB-indC Construct
To minimize the background colonies when exchanging the T-domain of the indigoidine synthetase we generated the ccdB-Ind plasmid where we replaced the indC T-domain with the ccdB gene (Modul structure: AoxA-ccdb-TE) which kills E. coli TOP10 cells but not E. coli OneShot ccdB survival cells. Test-transformation in both E. coli TOP10 and the E. coli OneShot ccdB survival cells showed that background colonies could be eliminated by this strategy. We used the ccdB-Ind for all further CPEC experiments aiming to swap T-domains. Primers for the backbone CPEC fragments were designed to facilitate the amplification of the entire ccdB-Ind plasmid while omitting the ccdB sequence (compare to Figure??). Assembly of the finale indigoidine synthase products with exchanged T-domain was achieved by CPEC as described or above or HiCT (RFC 99).Examination of T-domain borders
We exchanged the T-domain of indC with the T-domain of bpsA and varied the size of the exchanged DNA sequence, thus examining several domain borders (Figure 5). We used the CPEC assembly method and the indC-ccdB plasmid for this approach. For the investigation of additional T-domains from less related NRPS modules, we selected the border combination A2 which was positive in the test with bpsA. We used the T-domains of the following genes: Table 2: Genes of which T-domains have been extracted and introduced to indCGene | Organism | Original function |
---|---|---|
entF | Escherichia coli K-12 | NRPS module of enterobactin synthesis pathway |
tycA1 | Brevibacillus parabrevis | 1st module in tyrocidine synthesis cluster |
tycC6 | Brevibacillus parabrevis | Last module in tyrocidine synthesis cluster |
delH4 | Delftia acidovorans SPH-1 | 2nd but last module in delftibactin synthesis cluster |
delH5 | Delftia acidovorans SPH-1 | Last module in delftibaction synthesis cluster |
plu2642 | P. luminescens DSM15139 | NRPS of unknown function (one module: A-T-TE) |
plu2670 | P. luminescens DSM15139 | module of NRPS pathway of unknown function |
All T-domains from the respective genomes were amplified using CPEC primers with a uniform 5’-end and a 3’-end specific for the respective gene. For the assembly of the hybrid-indigoidine synthetases by CPEC, the indC-ccdB construct was used.
Creation of synthetic T-domains
All R scripts used in the following sections are based on R version R-3.0.1. Different assumptions about the evolutionary conservation of T-domains were examined: i) conservation of a specific module across different species, ii) conservation of T-domains across different modules for the same species, iii) conservation of T-domains across different species, iv) conservation of similar modules across different species. According to these three assumptions, different libraries of homologous protein sequences were generated using ncbi protein BLAST (blast.ncbi.nlm.nih.gov) with standard parameters:- query sequence: indC; Search set: non-redundant protein sequences without organism restriction
- query sequence: indC T-domain; Search set: non-redundant protein sequences within P. luminescens
- query sequence: indC T-domain; Search set: non-redundant protein sequences without organism restriction
- query sequences: indC, bpsA, entF, delH5 and tycC6; Search set: non-redundant protein sequences without organism restriction;
The 50 closest related protein sequences contained in each the library were subjected to a multiple sequence alignment (MSA) using clustalO (http://www.ebi.ac.uk/Tools/msa/clustalo/). with standard parameters for protein alignments. For library generation iv), each query sequence was BLASTed separately and the 50 best results of each query were combined i.e. a total of 250 sequences for the MSA. After library generation, the following three methods were employed to design different synthetic T-domains.
Consensus method
Based on the .clustal file obtained from the MSA of the homology libraries, a consensus sequence using the UGENE software (http://ugene.unipro.ru/) with a threshold of 50% was created (i.e. if an amino acid appears in 50% or more of all sequences at a specific position it is considered as a consensus amino acid). For the creation of the synthetic T-domains, this consensus sequence was used to fill the gaps where there was no consensus amino acid with the original amino acid from the indC T-domain. By this approach, T-domains were generated which might deviate from the original sequence at positions with at least average conservation but coreespond to the original one if there is less conservation.
Guided random method
In this approach, the multiple sequence alignments (MSA) generated by the consensus method was used. Implemented in R [Referenz], a position-specific profile was generated which has the same length as the MSA and contains the rate at which amino acids occur at any given position of the sequence alignment. The synthetic T-domain is created by position-wise generation of the sequence where the probability of choosing an amino acid at a given position is determined by the rate in the profile.
Randomized generation method
For generation of synthetic sequences by the randomized generation method, every amino acid was assigned a score of 1 or 0, i.e. occuring at least ones or not at all at a given position in the MSA. In the subsequent generation of the synthetic T-domain sequence of the synthetic domain, any amino acid assigned 1 had the same likelihood of being chosen at this position.
Guided random method
In this approach, the multiple sequence alignments (MSA) generated by the consensus method was used. Implemented in R [Referenz], a position-specific profile was generated which has the same length as the MSA and contains the rate at which amino acids occur at any given position of the sequence alignment. The synthetic T-domain is created by position-wise generation of the sequence where the probability of choosing an amino acid at a given position is determined by the rate in the profile.Randomized generation method
For generation of synthetic sequences by the randomized generation method, every amino acid was assigned a score of 1 or 0, i.e. occuring at least ones or not at all at a given position in the MSA. In the subsequent generation of the synthetic T-domain sequence of the synthetic domain, any amino acid assigned 1 had the same likelihood of being chosen at this position.Seven synthetic T-domains were designed based on differnt combinations of the homology libraries and sequence generation methods.
Table 3: Overview of the homology libraries and sequence generation methods employed for the generation of seven synthetic T-domainsDomain ID | Homology library | Sequence generation method |
---|---|---|
synT1 | library i | consensus |
synT2 | library ii | consensus |
synT3 | library iii | consensus |
synT4 | library iv | consensus |
synT5 | library i | guided random |
synT6 | library iv | guided random |
synT7 | library i | randomized generation |
Figure 11 shows the multiple sequence alignment of the seven synthetic T-domains and the native indC T-domain.
Primer | Primer sequence(5’ --> 3’) | Cutting site |
---|---|---|
BBa_J04450_stem_loop_fw | TAATGA GCTAGC TAATAACGCTGATAGTGCTAGTG | NheI |
BBa_J04450_B0034-RBS_ATG_rv | CAT GGTACC TTTCTCCTCTTT CTCTAGTATGTGTG | KpnI |
BBa_J04450_B0029-RBS_ATG_rv | CAT GGATCC GGTTTCCTGTGTGAA CTCTAGTATGTGTGAAATTGTTATCC | NheI |
Quantitative indigoidine production assay
1. OD MEASUREMENT by TECAN plate reader
96-well plates are prepared with 100 μl LB-medium/well containing appropriate antibiotics (chloramphenicol and kanamycin for the indigoidine and PPTase contrcuts, respectively) and each well is inoculated with single colonies (in duplicates) from plates positive for the co-tansformation experiments i.e. from plates with blue colonies. Two sets of negative controls are also inoculated on the plate: First, pure medium serving as the baseline for background correction for the OD measurements. Second, transformation controls accounting for potential differences in cell growth due to expression of proteins contained on the plasmids, i.e. the antibitotic resistance gene and IndC. In this set of controls, the plasmid used in co-transformation with the PPTase plasmid contains IndC-constructs carrying a randomly generated sequence instead of the T-domain. A second 96 well plate was prepared with 180 µl LB-medium/well for the measurement itself. The 96-well plate containing the pre-cultures of the co-transformed colonies was inoculated for 24 hours at 37°C. Subsequently, 20 µl of the pre-culture was transferred to the measurement plate. The absorbance of the bacterial cultures was measured at wavelengths ranging from 400 nm to 800 nm in intervals of 10 nm for each well every 30 min for 30 hours at 30°C in a Tecan infinite M200 plate reader. For the measurement plate, Greiner 96-well flat black plates with a clear lid were used.2. Data analysis
Detecting the amount of the NRP expressed by the bacterial host strain is desirable. By tagging the NRP with indigoidine, the amount of the fusion peptide can be determined by quantifying the amount of blue pigment present in the cells. As the amount of blue pigment is proportional to the amount of the NRP of interest, a method for the quantification of the blue pigment will yield information about the expression of the NRP. Quantification of the pure indigoidine pigment can be easily achieved by optical density (OD) measurements at its maximum wavelength of about 590 nm.
Brachmann AO, Kirchner F, Kegler C, Kinski SC, Schmitt I, et al. (2012) Triggering the production of the cryptic blue pigment indigoidine from Photorhabdus luminescens. In:. Vol. 157. pp. 96–99.
Doekel S, Marahiel MA (2000) Dipeptide formation on engineered hybrid peptide synthetases. In:. Vol. 7. pp. 373–384.
Doekel S, Coeffet-Le Gal MF, Gu JQ, Chu M, Baltz RH, Brian P (2008) Non-ribosomal peptide synthetase module fusions to produce derivatives of daptomycin in Streptomyces roseosporus. Microbiology 154: 2872-2880.
Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106: 3468–3496.
Muller M, Auslander S, Auslander D, Kemmer C, Fussenegger M (2012) A novel reporter system for bacterial and mammalian cells based on the non-ribosomal peptide indigoidine. Metab Eng 14: 325-335.
Myers JA, Curtis BS, Curtis WR (2013) Improving accuracy of cell and chromophore concentration measurements using optical density. Bmc Biophysics 6:
Owen JG, Robins KJ, Parachin NS, Ackerley DF (2012) A functional screen for recovery of 4’-phosphopantetheinyl transferase and associated natural product biosynthesis genes from metagenome
Owen JG, Reddy BV, Ternei MA, Charlop-Powers Z, Calle PY, Kim JH, Brady SF (2013) Mapping gene clusters within arrayed metagenomic libraries to expand the structural diversity of biomedically relevant natural products. Proc Natl Acad Sci U S A 110: 11797-11802.
Pfeifer BA, Admiraal SJ, Gramajo H, Cane DE, Khosla C (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. In:. Vol. 291. pp. 1790–1792.
Puigbo P, Guzman E, Romeu A, Garcia-Vallve S (2007) OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res 35: W126-131.
Quan J, Tian J (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One 4: e6441.
Takahashi H, Kumagai T, Kitani K, Mori M, Matoba Y, et al. (2007) Cloning and characterization of a Streptomyces single module type non-ribosomal peptide synthetase catalyzing a blue pigment synthesis. In:. Vol. 282. pp. 9073–9081.
Thirlway J, Lewis R, Nunns L, Al Nakeeb M, Styles M, et al. (2012) Introduction of a non-natural amino acid into a nonribosomal peptide antibiotic by modification of adenylation domain specificity. In:. Vol. 51. pp. 7181–7184.
Yu D, Xu F, Valiente J, Wang S, Zhan J (2013) An indigoidine biosynthetic gene cluster from Streptomyces chromofuscus ATCC 49982 contains an unusual IndB homologue. J Ind Microbiol Biotechnol 40: 159-168.